An Introduction to Komodo

The Komodo debugger and simulator is the low-level debugger used in the Digital Systems
Laboratory. Like all debuggers, Komodo allows you to run your programs under controlled
conditions. Doing this lets you see exactly what is going on in your program, helping you to
remove any problems (“bugs”) that might be present.

The examples directory and its subdirectories on your CD-ROM contain many examples of
assembly language programs that you can use to build up your debugging skills. And you
are encouraged to do so, as part of your laboratory preparation! Please see the end of this
document for details.

Invoking the Debugger

The Komodo debugger can operate in one of two modes: in hardware mode and in emula-
tion mode. In hardware mode, Komodo communicates with the DSLMU Microcontroller
Board via a serial cable. In emulation mode, Komodo runs some software that pretends to
be a DSLMU Microcontroller Board—the software emulates the ARM microcontroller and
some of the hardware that is present on the real board.

If you have a DSLMU Microcontroller Board in front of you (in other words, if you are in the
Laboratory), you can start Komodo in its hardware mode by entering the following com-
mand line in the Unix shell:

kmd &

The following window should appear:

35 Komodo Debugger for the DSLMU Microcontroller Board [FiEx
File Actions Special Reg bank Flags Help
Ping| Run| stop| Continus| Resst] Single-stap| Muiti-step| [1 2 walk|[1000 % Refresn| Compile -+| ﬂ Browse.
Features| = Breakpoints = Watchpoints Service: _|SWI _|BL | Abort Active: IR _|FIG Load > 1] Browse

Made: Serial State: Reset Total steps: 0 Load progress: | 0%
Current [Current New Memory Wmduw‘ 1 Word = ‘ ARM3Z ‘m 4 _isymbels 1 ASCHL = Disassembly [-1000
2 Reg | value (H ASCI ‘ ‘ ‘ 100
ey [value (Hex d
“WW’EﬁEmﬁﬁ%iii% S

Ahot |R1 00OODOOO ...
A2 00000000 ...
Undefined |R3 00000000 ...
R4 000OOODD ...

(] RS 000OOOD ...
e RE 00000000 ...

000

00000008 00000000 ceee NOP

0000000C 00000000 vee. NOP J o

00ooomao 00000000 vee. NOP

00000014 00000000 cee. NOP +10

00000018 00000000 cee. NOP

gg EEEEEEEE 0000001¢C 00000000 cee. NOP 100
00000020 00000000 ceee NOP

RS 00000000 ...
R10 000ODOOD ... 00000024 00000000 vee. NOP |

R11 00000000 ...
R12 00000000 ... r
R13 00000000 ... New Memory Wmduw‘ 1 Word 4‘ ARM3Z ‘10 % _isymbols = ASCH 1 Disassembly [1qgg
R14 00000000 ...

C 00000000 ... [[

CPSR 00000003 ... Hex ASCl Disassembly
SPSK 00000000 ...

00000000 e
10000008 10000000 ceee HOP
0000000¢ 00000000 ceee NOP J i
0o0oon10 00000000 NOR

0oooon4 00000000 NOP 10
0oooon1e 00000000 NOP
0oooonTc 00000000 NOP
00000020 00000000 ceee NOP +100
10000024 10000000 ceee HOP

Komodo Consale Window 5

Current Flags [Current Flags

Saved Flags | n|z|c VI\ F Supervisor 1
— L

If it does not, check that the DSLMU Microcontroller Board is turned on and is ready, that
the serial cable is firmly plugged in, and try again. If it still does not work, try replacing kmd
with kmd -v to get some low-level debugging messages that might help diagnose the
problem.

If you do not have a DSLMU Microcontroller Board in front of you, or don’t need to use it,
you can start Komodo in its emulation mode. To do this, enter the following Unix shell
command line:

kmd -e &

Downloading Your Program

Whether you use the Komodo hardware mode or emulation mode, you need to download
your ARM executable before you can begin the actual task of debugging it.

To download your executable program, click on the second Browse button in the top right-
hand corner (ie, the one associated with the Load button, not the Compile button). A dialog
box will appear that allows you to choose your executable; do so, then click OK. Back in the
main window, the full filename will appear next to the Load button. Now, click on the Load
button: this will download your executable to the actual board or emulator.

Preparing to Run Your Program

Once you have downloaded your program to the DSLMU Microcontroller Board or to the
emulator, you can prepare Komodo to run your program. There are four main steps you
need to follow. These steps are also used to restart a program (ie, start running it from
scratch).

The first step is to reset the ARM microcontroller. To do this, press the Reset button. This
initialises the PC and CPSR registers on the microcontroller.

The second step is to set the Program Counter register (PC) to the correct address. To do
this, click on the PC register on the left-hand side of the window. The register name (PC)
and value are copied to the edit fields above the registers. Click the left mouse button in
the edit field, delete the value (using the BACKSPACE and arrow keys), type in the label _start
and press ENTER. The list of registers will be updated to reflect the new value:

rent Current

System PC _start
Req | Value (Hex) ASCI

R0 0DOOADA ...
aot |R1 nooonoon ...
Rz 0DOOADA ...
fined R3 00OODDOO ...

R4 0DOODOOD ...
B RS 00DODOOD ...
A RE 0DOODOOD ...
7 00DODODD ...
2 0DnODA ...
R3 0DNOADA ...
R10 000NOADA ...
11 O0OOOOON ...

srvisor

R12 000O00DOD ...
R12 D00OOODDOO ...
R14 00000000 ...

CPSR 00000003 ...
SPSR 000O00DOD ...

The third thing to do is to get Komodo to display the portion of the program you will be
running. To do this, click the left mouse button in the edit field above the Address label,
delete anything already there, type in pc and press ENTER.! You should now see part of your
program in a disassembled format; this part of the window is called the Memory panel,
because it displays a portion of your program’s memory:?

MNew Memory Wmduw‘ 1 Word - ‘ ARM32 - | 10 ? I Symbols 7 ASCI [Disas

b \ [
Address Hex ASCI Disassembly

EAFFFFFF an]
tain E3A04201 B.. MOV R4, ®0x10000000
tain_loop E3AOSOFF SPoL MOV RS, HOxFF
00on&onc E5C45000 .P.. STRE RS, [R4]
nooneotn E3A05000 SPoL MOV RS, #0Ox0
noon&ot4 E5C45000 .P.. STRE RS, [R4]
000n&0t & EAFFFFFA ... B 0x8008
0oonentc annaonan HOP
nooneo2n annaonan wv.. HOP
noon&o24 annaonan wv.. HOP

Please note that it is the green arrow, not the blue highlight, that indicates the current point
of execution in the Memory panel!

' If you like, you can enter something like pc-8 instead: this automatically shows you the two instruc-
tions just prior to the location of the PC register.

2 Tt is also called the Disassembly panel as it takes your binary executable file (not your source code)
and disassembles it into ARM instructions.

The fourth thing you should do (although this is optional) is make sure that the Symbols
checkbox is selected in the Memory panels, as shown in the previous screenshot. Komodo
will then display any labels defined in your program instead of the address at that location.

The final (and optional) step that you might like to do is set a breakpoint at the label exit.
Please see the section “Stopping Your Program” in this document for more information on
how to do this.

Quitting the Debugger

To quit the debugger, simply select File » Quit Program. That is, click on the File menu and
select Quit Program.

By the way, there is no need to quit the debugger because you have made some changes to
your program. For example, imagine that you have found an error in the program being
debugged. Simply modify the program source code in your editor window and save it, then
type make in the Unix shell.? You now need to download the new executable and prepare
Komodo to run it, as explained previously.

Starting Your Program

Once you have prepared Komodo to run your program, you can actually do so by pressing
the Run button. The program will then start executing until it comes to a breakpoint.

Stopping Your Program

The whole purpose of a debugger is to control the execution of your program. In particular,
Komodo allows you to stop your program at any point and then to proceed in a way most
convenient to you. There are two main ways of stopping: the “abnormal” or emergency way,
and the normal way.

The abnormal or emergency way to stop your program is by pressing the Stop button. This
is especially useful if your program has “run away” from you!

The normal way to stop a program is by setting breakpoints in it. A breakpoint, as its name
implies, breaks the program’s execution at that point. To do this, select the Special »
Simple Breakpoints menu item, which will bring up a window similar to the following:

X Simple Breakpoints [=][m>¢
Delete | Address
activate |E‘>‘“

Deleted
v Qaoo0s038

Deleted
Deleted
Deleted
Deleted

Select the breakpoint you wish to set from the list by clicking on it—this will highlight that
line in blue. Now you can enter the address at which you want Komodo to stop. You can
use labels defined in your program (as shown above) or hexadecimal numbers with or with-
out the usual 0x prefix.

You can use the same Simple Breakpoints window to delete breakpoints you no longer need
or to temporarily disable breakpoints at which you do not wish to stop. Komodo also pro-
vides a more powerful Breakpoints window, in which you can specify a range of addresses in
which Komodo will stop. You can also double-click on any line in the Memory panel to set
or remove a simple breakpoint at that address.

* This assumes that you are using Makefiles to manage your project, which is highly recommended!

Stepping Through Your Program

Once your program has stopped at a breakpoint, you can let it continue running until it
reaches another breakpoint. You do this by clicking on the Continue button or by pressing
F10.

If you want to execute just the next assembly-language instruction in your program, click on
the Single-Step button or press F7. If you want to step more than one instruction in one go,
enter the number of instructions to be stepped into the edit field to the right of the Multi-
Step button, then click on Multi-Step or press FS8.

If you don’t want to trace into functions (in other words, if you want to treat the whole sub-
routine or function call as a single assembly-language instruction), make sure that the BL
checkbox is selected, as shown:

ulti-Step | [1 = wa

Service: 1 3Wl © BL _| Abort

When this checkbox is selected, the Single-Step button will not jump into functions that are
called with bT-type instructions. The SWI checkbox works in the same way.

Examining the Registers and Memory

A debugger would be pretty useless if all you could do was stop and start your program. Its
power lies in the fact that you can see a program’s state while it is stopped: in other words,
you can actually see the program’s registers and variables.

The Komodo debugger allows you to inspect the ARM microcontroller’s registers at any
time: these are all contained in the Registers panel on the left-hand side of the window. All
register values are displayed in hexadecimal; if you want to see a register’s value in decimal,
pull out your calculator and work it out! Remember that, on the ARM microcontroller, regis-
ter PC (the Program Counter) is also known as R15; register R14 is used as LR, the Link Reg-
ister; and register R13 is almost always used as SP, the Stack Pointer.

You can examine a portion of your program’s memory in the second Memory panel. Simply
modify the edit field above the Address label and press ENTER; that section of memory will
be displayed in hexadecimal. You can enter the address as a hexadecimal number (with or
without the Ox prefix), as a register name or as a label that you defined in your program.

Please note that there is a difference between displaying your program’s variables and dis-
playing a portion of memory: the difference is who does the interpretation. When you dis-
play a section of memory, you are responsible for interpreting that section correctly. Does
the area of memory represent a string of bytes? Or a single 32-bit word? Or even an array
of pointers? You decide!

To help you do this, Komodo allows you to display the area of memory in a variety of for-
mats. Simply select a format from the list box above the Address field. The most useful
formats are 1 Word for 32-bit words, 1 Half-word for 16-bit half-words and 1 Byte for 8-bit
bytes. Other formats can display more than one quantity on a single line.

Modifying the Registers and Memory

Komodo allows you to not only examine registers and memory, but to modify them as well.
You do need to be careful, however: it is often very easy to crash your own programs when
they are presented with unexpected values!

To modify one of the ARM microcontroller’s registers, click on that register from the Regis-
ter panel, change its value in the edit field above, then press ENTER. As usual, you can use
hexadecimal numbers (with or without the 0x prefix), register names, or labels that you have

defined in your program. Once you press ENTER, the register will be modified and the panel
will be updated:

t Current
o [t [rzae
— |[Reg [value (Hex)| _ ascil

_|[r0O ooOOS1SE M.,
R1 oooo2iaR L.,

— ||R2 Dooooot4 L.
2d IRz oo0oODOOO ...
= ||r4 00000OODD ...
RS 0ooooQoOoo ...,
RE 00000000 ...
— ||R? 0ODOQOOD ...
R 00000000 ...
RY 0ooO0QOOD ...
R10 00000000 ...

R12 0ooooooo ...,
R13 00008SFR ...
R14 0o0o0ooo ...,
PC Qooog0M0 ...
CPSR 000000D3
SPSR QOO0QOOD ...

Modifying the contents of memory is slightly trickier. First, enter the appropriate address in
the Address edit field and press ENTER. That address will now be displayed.* Next, use the
TAB key to move to the Hex field (next to the Address field), then use the BACKSPACE and
arrow keys as appropriate to delete any value there. Finally, you can enter the new value as
a hexadecimal number, with or without the Ox prefix:

IMew bemory Wmdnw| 1 Word = ‘
8800 [1234 [[
Address Hex ASCII

00003504 00000000 .
oonosgng 2ESA4E4A TNZ.
0000380C 00000000 .
oonosgg1o 00000000
00005814 00000000
oonosg1e 00000000

Once you have entered the new value, press ENTER. The section of memory will be modified
and the address will be automatically incremented to the next location.

Downloading an FPGA Configuration

In addition to running and debugging your programs, you can use the Komodo debugger to
download an FPGA configuration into the Field Programmable Gate Arrays (FPGAs) on the
DSLMU Microcontroller Board. Two FPGAs are available on this board: the Xilinx Spartan-XL
XCS10XL and the Xilinx Virtex-E XCV300E.

To download a configuration into the Xilinx Spartan-XL FPGA, click on the Features button,
then select the Spartan XCS10XL tab. You should see the following:

X+ Features IDIC=T(ES
Spartan XCST0XL | Wirtex XCYa00 | Terminal |
Update| /| Browse..

MName: Empty
Date: 000000400 Download
Time: 00:00:00

0%
MName: Empty
Date: 0ooosooso0 Erase
Time: 00:00:00
T T

You can now click on the Browse button to select your FPGA program; the relevant file will
have a .bit extension, as generated by the Xilinx FPGA Tools software. To download to the
Xilinx Virtex-E FPGA, select the Virtex-E XCV300E tab instead. This feature is only available
when connected to the actual hardware, not to the emulator.

* Please note that the blue highlight might not reflect this new address. In general, it is best to ignore
the blue highlight in Memory panels; the blue highlight usually reflects the last line that you selected
with the mouse button.

Programming the FPGAs on the DSLMU Microcontroller Board is beyond the scope of this
document. Please see the DSLMU Microcontroller Board Hardware Reference Manual for
more information; you can find this manual in the board/doc directory on your CD-ROM.

Accessing the Komodo Terminal

One of the features of the software running on the DSLMU Microcontroller Board® is that it
allows you to write programs that communicate with the Komodo debugger. This feature is
called the terminal, and can be accessed by clicking on the Features button, then selecting
the Terminal tab. You will need to make sure that the Active is enabled, as shown below:®

X+ Features |[=]m][!
Spartan XCS10XL | Virtex XCW300 Terminal ‘

The terminal window is warking correctly: this text has heen
typed in by hand, and echoed back by the program running
on the DSLWU Microcontroller Board,

r Active Clear ‘
T

Please see the description of the Serial RxD, TxD and Status ports in the DSLMU Microcon-
troller Board Hardware Reference Manual to see how you can use the terminal from within
your own programs.

Example Files

As already mentioned, the examples directory and its subdirectories on your CD-ROM con-
tain many examples of assembly language programs. You can use these example files to
practise the debugging steps discussed in this document. And you are encouraged to do so,
as “practice makes perfect”!

In particular, the examples/intro directory contains the following example files (amongst
others); run the debugger on each and follow the suggestions given:

pseudo.elf Compare the source code (in pseudo.s) and the disassembled
code in each of the subroutines. You can enter labels like
subl into the Memory panel to display that portion of your
program.

subr.elf Try stepping through this program with and without the BL
checkbox being selected. Note how the debugger allows you to
either trace into a function or to execute it as if it were a single

instruction.

jumptbl.elf Stepping through this program will help you understand jump
tables.

wordcopy.elf Trace through your program, noting how the content of the

src array is copied to dst. Try modifying elements of src and
rerunning the program.

Happy debugging!

> The on-board software is called the Komodo ARM Environment. You should be careful not to mix up
the Komodo debugger (also called the front-end software) with the Komodo ARM Environment (also
called the back-end or systems-level software). Although both work closely together, each performs a
very different task. Please see the DSLMU Microcontroller Board Hardware Reference Manual on your
CD-ROM for more information.

¢ Ignore the text in the window in this screen-shot: this was transmitted by an example program run-
ning on the DSLMU Microcontroller Board.

	An Introduction to Komodo
	Invoking the Debugger
	Downloading Your Program
	Preparing to Run Your Program
	Quitting the Debugger
	Starting Your Program
	Stopping Your Program
	Stepping Through Your Program
	Examining the Registers and Memory
	Modifying the Registers and Memory
	Downloading an FPGA Configuration
	Accessing the Komodo Terminal
	Example Files

