Biscotti: a Framework for Token Flow based Asynchronous
Systems

Charlie Brej
School of Computer Science, The University of Manchester,
Oxford Road, Manchester, M13 9PL, UK.
cbrej@cs.man.ac.uk

Abstract

Examining novel asynchronous structures, synthesis methods
or optimisation techniques usually relies on being connected
to a large synthesis system, such as Balsa or Haste, which
already has all components in place to construct large circuits.
Not being linked to a large tool yields results which can not
be easily analysed by the community. This paper presents a
framework which can construct and analyse token flow style
circuits and enable a rapid implementation of novel algorithms
and techniques.

1 Introduction

The Sedate project is concerned constructing circuits with
a variety of data encodings and completion conditionings.
Although the project is aimed at exploring these variables, as
a designer it is beneficial to abstract away the asynchronous
nature of the pipelines and the data encoding used, and
instead concentrate only on the functional aspects of the
design. The Biscotti framework aims to automatically generate
the pipelining and completion detection structures as well
as choosing the most appropriate encoding style and logic
implementation.

All target circuits are push only token-flow [1] style
constructions which make it possible to apply a number
of optimisations irrespective of the encoding style used.
Although many of the optimisations can be applied in a static
manor, it is beneficial to extract the behaviour of the design
in a test simulation to determine the type of optimisation most
beneficial for a circuit in the target environment. To enable this
a simulator is included in the system. Because synchronous
technology mapping tools have no knowledge of certain timing
assumptions, they cannot be used without checking that timing
assumptions have been upheld and no illegal transformations
(e.g. extending isochronic wire forks) were applied. Thus
a timing extraction and techmapping components were also
incorporated into the framework.

When developing new algorithms and techniques for
asynchronous circuit generation, it is difficult to perform a fair
comparison between the new method being researched and a
heavily optimised method with an entire tool suite of tools.
The aim of the framework is to allow an easy incorporation of
advanced asynchronous techniques with the ability to analyse
their effect and their benefits when applied in conjunction with
the set of already implemented optimisations.

2 Framework Parts

The Biscotti system is composed of a series of libraries. The
basis of the whole framework is the netlist library.

2.1 Netlist

The netlist library handles circuits and component libraries.
These can be loaded from structural verilog files or constructed
by the other tools in the framework. To enable the other tools
to perform operations on the circuits, a series of functions are
included. There are simple functions allowing the insertion,
removal and amendment of elements, wires and buses. There
are also powerful functions such as flattening to the level of a
set of base gates.

This library is not asynchronous logic specific and can be
used to manipulate any style of circuits. It is the job of the next
library to perform asynchronous logic specific tasks.

2.2 Async Transformations

Circuits in the netlist library can be thought of as having one
of two representations. The first is one of being base level
where every gate represents a real gate in the design. The
in the second representation every component is an abstract
functional description of the desired construction. These
abstract components can operate using multi-valued signals (as
opposed to just 0 and 1). They may also contain high level
primitives which communicate the pipelining structure, and the
placement of the initial tokens (initial marking) in the design.

In the abstract level, it is trivial, for example, to divide a
stage into two using a series of half-buffers. This is achieved by
placing abstract half-buffers across the stage. Alternatively, in
the non-abstract circuit level, the pipeline would have to have
all its completion detection logic and data encoding reverse
engineered and re-implemented. This is a difficult and risky
task for a relatively common procedure in slack matching[2, 3]
type optimisations.

2.2.1 Pipeline Generate

The abstract description contains two types of elements;
the pipelining control elements, and the data processing logic
elements. To transform the abstract netlist into a concrete
circuit, these two types of elements must be replaced with their
concrete implementations.

When implementing the pipelining structure, the first task is
to generate the acknowledgement tree. The acknowledgements

feed from the output latches of each stage, forking at every
multiple input logic element, merging (using a C-element) at
all forks and multiple output elements. This generates a clumsy
structure which often contains redundant parts. It be easily
improved, but at this stage it is left in its suboptimal state to
be processed by later optimisation stages. If early output logic
[4] is used, an additional validity tree is constructed, flowing
in the opposite direction to the acknowledge tree.

The second job of the pipeline generation is the construction
of the latch controllers. The system currently assumes a return
to zero code with a pre-defined completion detection scheme
aimed at the target data encoding scheme. In the case of a dual
rail (1-of-2) encoding, the data signals are transformed into
two wires and an OR gate is used to generate the completion
detection. The data encoding style is specified by the logic
synthesiser which is capable of generating many logic styles
form a single description. It is also possible to avoid the logic
synthesis stage and instead leave the logical blocks in their
abstract state. The completion detector used will use multi-
valued logic values to communicate the value and spacer codes
along a single signal. This enables the designed system to be
tested independent of the logic implementation.

2.2.2 Logic Synthesis

The primary job of the logic synthesiser is generating
the gate level implementation of the abstract logical
function description elements. It also, as mentioned above,
communicated the data encoding style used. Currently there
are two logic styles fully implemented: early output and
DIMS. These both use dual-rail signalling. A further style
which will be implemented in the near future as a part of
the Sedate project will use a variety of data encodings and
conditionings.

2.2.3 Wagging

One of the most powerful transformations is wagging [5].
Because four-phase circuits have a large cycle time compared
to their latency, it is beneficial to perform the next cycle of
computation on a different unit than one used last (as the
one used last will be resetting for a period of time). The
wagging transformations replicate the whole design several
times, attaching the signals which would be feeding to latches
in one slice, instead to the latches in the next slice. This can be
easily done in the abstract level.

2.3 Simulation

The simulation library allows for designs, in their test
benches, to be simulated and their performance determined and
analysed. The simulator is capable of simulating the abstract
level circuits which can communicate multiple codewords
across a single signal wire. The library can also be used to
extract the slowest trace of a simulation. The data from this
can then be used to improve the performance of the design.

The circuit can be simulated in a number of different timing
models. The single gate delay model uses a value of 1 as the
delay of all elements. The unit gate delay model uses a value
estimated by looking at the complexity of the element (input
and output counts). The unit delay model is especially useful

when dealing with abstract functions which have no timing
technology based information. The extracted model takes the
timing from a timing extractor to give reasonably accurate
delay values. The timing extraction is either performed by a
commercial tool and read in using the SDF format, or it can be
performed by another library in the framework.

2.4 Timing Extraction

Timing extraction performed by tools such as PrimeTime
is often not suitable for asynchronous circuits due to their
cyclic timing dependencies. In synchronous circuits all activity
in the design is caused (directly or indirectly) by a clock
edge. The activity in asynchronous circuits is caused by other
activity leading back further and further to form a loops of
odd numbers of inversions. Because, in timing extraction, the
calculated slew of the output is based on slew of the input, the
loops cause cyclic dependencies in the algorithm to arise. The
solution to this problem is the non-ideal breaking of all loops.
The library aims to solve this problem by reimplementing the
algorithms to suit asynchronous circuits.

The cell timing descriptions can be read from TLF (Timing
Library Format) files. These contain spline tables describing
the timing of an element in a array of possible environmental
conditions. This information can then be applied to a circuit
to extract all input to output path (rising and falling) transition
delays.

2.5 Tech-map

In addition to the standard verilog primitives, the netlist
library has additional asynchronous logic specific primitives.
The majority of these are the abstract pipelining elements,
but there are two concrete elements which are useful when
mapping the design into a library of cells. These are the C
element and the C element with withdrawable inputs. The
distinction between these elements being that the C-element
with withdrawable inputs cannot be constructed from a tree of
C-elements. Luckily these are rarely used and thus most C-
element blocks can be processed without having to abide by
that restriction.

2.5.1 Resynthesis

Blocks of C-elements make up a large portion of most
designs. Because the availability of large C-elements is
technology dependant, the process of forming the the C-
element blocks into trees is only performed once the available
C-element sizes are established. The flattened design is firstly
hierarchysed into separate blocks of C-elements and logic.
Any un-understood and locked elements remain in the top level
netlist. The C-element blocks, which by this stage are directed
flow graphs of a number of inputs and outputs, are then turned
into a dependency table. This table is then processed by
adding implicants which can be shared by multiple outputs,
thus reducing the overall size.

This approach gives a lower area (and power) design, but
it does not target performance. In order to improve the
performance of C-element blocks, a slowest trace is used
to guide the resynthesis procedure. The critical input to
output transitions of the block are identified and when the

resynthesis procedure is operating it avoids using intermediate
implicants which will increase the gate distance between the
input and output transitions. The analysis and resynthesis can
be repeated any number of tiles until the performance cannot
be improved any more.

The logic blocks can also be resynthsised. This work has not
been carried out yet but the process will be slightly different
from that used in the C-element blocks. When dealing with
logic, rather than fully resynthsising the entire block back from
the reverse engineered specification, only the critical portions
of the circuit are altered. Using the slowest trace an input to
output path can be identified which can be shortened. But,
instead of shortening the path the tool will place an auxiliary
path which will, in some circumstances, provide an output
transition earlier than by passing through the original path.
One example of this is an addition of an extra input into an
OR gate in a carry chain. This extra input can detect, using a
wide gate, a positive carry in the target bit. This way the result
is generated as usual but in the observed situation the result
will also be generated using the supplemental hinting logic.

2.5.2 Drive Strength

The techmapper by default uses the smallest gates in
the library to decrease the area and power. The slowest
path can also be used to direct the tech-mapper as to
increase the performance of the circuit by directing it to
examine the input to output transitions of gates in the
slowest trace. The techmapper then examines possible
implementations of the gate in question and input pin
rearrangements. Using the timing extraction library it
then picks the one which gives the greatest performance
improvement (if any). There is a reasonable variation of up
to 20% in the delay of a gate depending on which input pin
caused the transition. Rearranging the input pins alone gives
performance improvements of 5% to 10%. Choosing the gate
drive strength depending on simulation patterns reather than
static methods allows lower area components to be used in
non critical paths, and additionally reduces the capacitance
of wires. Further optimisations such as buffering off (thus
reducing the capacitance) non-critical net destinations should
yield additional performance improvements.

3 Processes

Although the the framework is still not easily usable it is
currently capable of performing many of the tasks for which it
was designed.

3.1 Timing Extraction

One of the first uses of the framework was to perform timing
extraction of asynchronous circuits which were problematic
in for commercial tools. To examine the accuracy of the
method, the timing results of the framework’s implementation
were compared to those from a commercial tool. The delays
were within one percent of the commercial tool’s values. The
method can be used to generate SDF files which can be
exported to external simulators, or be used directly by the
internal simulator.

3.2 Slowest Trace Extraction

Slowest trace extraction is the primary reason for
implementing a simulation system into the framework. The
slowest trace can be extracted from either circuits read directly
from verilog or ones generated by the system. The information
can be used by the designer to determine bottlenecks in the
design. The data can also be used by the internal optimisation
system to improve the performance of the design.

3.3 Drive Strength Optimisation

The slowest trace supplies the input pin to output pin
delay which needs to be improved. This can be achieved by
swapping the input pin connections, as cells have different
timings for different input to output transitions. Pin swapping
is not a technique which is applied in most techmappers so it
can be applied to good effect even in optimised designs. In
addition to pin swapping the method also performs element
replacements for ones with a drive strength most suitable to
a particular placement. Because an optimisation changes the
timing of the circuit, the slowest path may change and the
slowest trace extraction process should be repeated to optimise
a new set of weak links in the design.

3.4 Desynchronisation

The simplest flow to generate asynchronous circuits is
using desynchronisation which allows the designer to construct
the functional behaviour of the design without having to
also construct the self-timed logic, latching and acknowledge
networks. The input design circuit is very close in form to the
abstract circuit representation so only minor processing needs
to be applied (clock net removal and removal of clock pins on
flip-flops).

The design can then be simulated in it’s abstract form, or be
transformed into an asynchronous circuit (at this stage either
DIMS or early output).

3.5 Sedate Flow

Implementing the full Sedate flow is the target of the
framework. This involves reading in a behavioural description
and transforming it into an abstract pipeline representation. In
this stage the abstract model is analysed and the pipelining of
the design is mapped out. Once the pipelining is fixed in place,
the design can be simulated in more detail. Extracting from
the simulation the information about the use of each logic unit,
the next step is to fix in place the data encodings used for each
channel in the design. After this, circuit implementations the
logical blocks can be constructed. Replacing the abstract logic
blocks with concrete implementations allows a full physical
simulation. Again, from this simulation more data can be
extracted which is fed to the logic block generator. The logic
block generator uses this information to make more suitable
implementations. These new implementations are replaced
into the design and the simulation cycle can be repeated.

The logic block generator also generates timing assumptions
which must be abided by for the circuit to function correctly.
These timing assumptions make certain implementations of
logic blocks not applicable in some circumstances. The

optimisation system chooses the fastest blocks for a situation,
but with timing assumptions which can be abided by. The
techmapper is the last stage in the process which aims to
improve the performance of the design, yet not break any
timing assumptions.

4 Conclusions

Because the tool set is constructed depth first, at this stage
it is only usable for a very narrow range of tasks. This
is a temporary measure aiming at exploring the thesiability
of methods and algorithms. Ultimately it is hoped that the
same framework can be the basis for a number of language
inputs, logic styles and optimisation schemes. With a
suitable framework it would be possible to rapidly research
new alogorithms and techniques on an array of design
methodologies without having to construct an entire system.

The project is now capable of performing many complex
techniques but there are still many more elements to be
constructed to make it general enough to be used as a
universal framework. Another part of future work will
be implementing many of the alogorithms described in
asynchronous community publications and examining their
productivity in a fair environment.

The project is available under the GNU public licence.

References

[1] J. Sparsg and S. Furber. Principles of Asynchronous
Circuit Design - A Systems Perspective. Kluwer Academic
Publishers, dec 2001.

[2] Peter A. Beerel, Nam-Hoon Kim, Andrew Lines, and
Mike Davies. Slack matching asynchronous designs. In
International Symposium on Asynchronous Circuits and
Systems, pages 184—194, Los Alamitos, CA, USA, 2006.
IEEE Computer Society.

[3] Piyush Prakash and Alain J. Martin. Slack matching quasi
delay-insensitive circuits. In International Symposium
on Asynchronous Circuits and Systems, page 195,
Washington, DC, USA, 2006. IEEE Computer Society.

[4] Charles Brej. Early Output Logic and Anti-Tokens. PhD
thesis, 2005.

[5] Charles Brej. High performance asynchronous circuit
design method and application. In UK Asynchronous
Forum, 2007.

