
, UK.
Blame Passing for Analysis and Optimisation

Charlie Brej
Dept. of Computer Science, The University of Manchester, Oxford Road, Manchester, M13 9PL

cbrej@cs.man.ac.uk
r
ere

ge

g

a
the
of
ion
an
it-
n
er
uts

an
al
th

ge
the

e
one
e
ta
y
til
is
it
Abstract

Potentially, asynchronous circuits can execute faster than
their synchronous counterpart because of their average-case,
rather than worst-case, performance. In practice, such an
advantage is difficult to achieve. A major reason is the difficulty
in identifying timing-critical regions of the circuit and analysing
the results of changes to the system. The problem arises because
static critical path extraction tools used by synchronous
designers do not work with asynchronous circuits.

This paper introduces a novel, pragmatic dynamic timing
analysis approach to determine bottlenecks in asynchronous
circuits. This approach evaluates the behaviour of a circuit within
a specific test-bench designed to exercise the circuit in a manner
typical of its final application.

Extracted information can then be used to determine which
optimisations should be applied, and where those optimisations
should be applied. Circuit behaviour information can also be fed
back to the designer to allow circuit bottlenecks to be visualised.

1. Introduction
There are many circuit design methodologies which do not use

a global clock as a timing reference to mark the completion of
operations[1]. Of these, the most relevant in this paper are circuits
where the timing of each operation is not bounded but rather is
implicit in the data encoding, and in particular circuits with Delay
Insensitive (DI)[1] data encodings. Circuits with data dependant
timing (e.g. operand dependant matched delays) or data
dependant control sequences (in systems made with languages
such as Balsa[2]) are also amenable to the approach described in
this work, but will not be considered in depth.

Circuits with DI data encodings can have non-uniform timing
which is dependant on the operation executed. This is different
from synchronous circuits where every operation’s execution time
is bounded by the predictable clock period. This bounding leads
to predictable timing which allow circuit analysis to take place in
a static manner. In synchronous systems this takes the form of
critical path extraction[4]. The predictability of synchronous
systems, and the bounding which the clock provides, naturally
leads to systems with worst case performance, irrespective of the
pattern of data processed.

Static timing analysis has become the method of choice for
synchronous circuit analysis as it has the advantage of high speed
of analysis and complete coverage of all significant paths. The
lack of simple timing references across an asynchronous circuit
can make static analysis difficult. This paper attempts to use

simulation and dynamic analysis to exploit the potential fo
average case performance[3] in asynchronous circuits, wh
data-dependent timing exists.

One of the design methodologies which tries to exploit avera
case performance isearly output logic[5]. In this paper early
output circuits will be used to demonstrate the dynamic timin
analysis method and the optimisation system.

1.1. Early Output Logic
Early output logic attempts to increase performance of

system by first decreasing the latency of each stage: Through
use of 1-of-n delay insensitive codes, the completion
computations can be determined through the use of complet
detection logic on the data outputs of a stage rather than
estimation of stage timing using a worst case delay model. B
level pipelining allows the generation of partial results which ca
be forwarded to the next computational stage while the remaind
of the outputs are still being processed. In cases where the inp
which have arrived to a function are sufficient to generate
output, the output generation is not synchronised with the arriv
of the remaining inputs. The output is generated in parallel wi
the gathering of the inputs to the stage. This allowsearly output
[5] generation, yet correctly acknowledges all inputs to the sta
even if they were late (and so unnecessary for generating
output).

Figure 1 shows a segment of an early output circuit. Th
communication is done across 4 wires: request zero (R0) and
(R1), validity (V) and acknowledge (A). The early output OR gat
is constructed from an AND/OR pair which generate the two da
output signals. The validity output from the gate is formed b
gathering all validity inputs. The latch cannot acknowledge un
the validity becomes high. It asserts its validity output once it
outputting data becomes valid. This style of early output circu
construction is described in more detail elsewhere[5].

Figure 1: Example early output circuit segment

al
tion
at

in
to
y of
are
on
e

s
the
th

.
ble
e.

he
not

ity
tic
ch
d.
data
ent,
o
ich

(as
and
ut

, an
to
as

tes

the
al.
en
by
of
the
ed.
e
n

er.
ch
ble
n

1.2. Asynchronous Circuit Construction
Most asynchronous circuits are constructed in a manner very

similar to that of synchronous circuits. The circuit is composed of
computational logic which takes inputs and generates outputs based
on those inputs. Latches are used to store data and keep it stable
while it is being processed by the combinatorial logic. The main
differences in the numerous asynchronous design methodologies
come from the use of differing handshaking protocols and data
encodings used to co-ordinate transfer of data between latches.
Each approach has its advantages and disadvantages. In particular,
it is advantageous to ensure that control signalling happens with the
same set of signal transitions for each transfer. The power and speed
attractive two-phase protocols[6] make this difficult. The use of a
‘reset’ phase with four-phase protocols[8] leads to simpler circuits,
but considerable effort is requires to hide the latency of the reset
phase by overlapping it with other circuit activity. Encodings such
as four-phase 1-of-4 encoding are popular as the circuits produced
are simple and the energy efficiency of the code is good[7].

1.3. Asynchronous Circuit Properties
Early output logic tries to tackle the overheads of the four-phase

1-of-n codes when used in combinatorial logic. Unfortunately, due
to the use of the four-phase protocol there remains the reset period
problem. A generally accepted method of reducing the effect of the
reset period is to doubling the pipelining in the system while
keeping the number of tokens the same. This allows half of the logic
stages to compute while the other half resets, ready to accept new
values.

Fine grain pipelining is not always benefial. It can lead to an
increase in the latency of data flowing through the pipeline. Other
optimisations such as C-element tree balancing improve response
time for each input equally. This often does not take into account the
case where inputs arrive in sequence and so balancing the tree can
shift the last input to arrive from a position where it was close to the
output to a position further from the output.

In order to determine where these optimisations should be
applied, the circuit’s performance must be analysed when
performing ‘typical’ operations.

2. Static Timing Analysis
There are some static methods which can be adapted to

asynchronous circuits.

2.1. Slack matching
Slack matching [9] allows a crude balancing of the level

pipelining between two paths with the same start and end points.
This method adds additional pipelining latches into the path with
the lower pipelining. This ensures that at the start of the fork the two
paths are capable of accepting an equal number of data tokens and
a stall due to one pipeline being full becomes less likely. This
system makes many assumptions such as a equal execution time of
each stage, a bundled data system (no bit level pipelining) and no
data dependant delays. Another limiting factor is only optimisation
which can be applied using this method is pipelining latch insertion.

2.2. Critical path extraction
Synchronous circuits use static timing analysis to extract the

critical path and the optimisations rely on making this shorter.
The extraction of the critical path from synchronous designs

uses an algorithm which finds the route and the length of the critic
path [4]. This process is made simpler because of the assump
implicit in the use of clocked latches that all inputs are applied
the same time.

The algorithm marks the time of arrival of data at each point
the circuit. This is done by determining the latest arriving input
each gate and marking the output time as that time plus the dela
the gate. The outputs of the latches after the active clock edge
marked as occurring at time zero. Once this has been performed
all signals in the circuit, the signal with the latest arrival time can b
found and its route between latches can be determined.

This method has several limitations: combinatorial logic loop
are not permitted due to the cyclic dependencies produced, and
critical path can include more than one mutually exclusive pa
which gives a critical path which cannot occur.

This method is sufficient for simple synchronous circuits
Unfortunately most asynchronous circuits do not have predicta
and cyclic timing and the static timing approach is not applicabl

3. Blame Passing
A method to analyse asynchronous circuits is crucial to allow t

asynchronous engineer to tackle system bottlenecks. As this can
easily be done statically, it must be performed dynamically.

3.1. Simulation
The basis of the dynamic timing analysis approach is the abil

to simulate the examined circuits. In order to observe realis
operation of the unit, the circuit must be placed into a test-ben
emulating the environment in which the unit would be use
Because the delays and sequencing of the operations are
dependant, the test-bench must accurately reflect the environm
otherwise the optimisations applied will be optimising the circuit t
execute operations or react to environment stimuli sequences wh
may never occur.

The absolute accuracy of the simulator used is not important
long as relative delays are reasonably consistently represented)
any level of simulation between behavioural models and post-layo
transistor-level analogue simulations could be used. In this paper
example fixed delay gate level simulator has been used
demonstrate the methodology. A custom gate level simulator w
implemented as it is fast and it does not rely on external tool sui
to generate satisfactory results for all components.

Once the circuit and the test bench have been loaded into
simulator, the simulation begins with the release of the reset sign
The simulation then continues until the benchmark has be
completed. The completion of the benchmark can be signalled
raising a specific signal or it can be time bound and instead
recording the time taken to perform a set number of operations,
number of operations executed in the set amount of time is record

The simulation performs two tasks: 1) measuring th
performance of a proposed circuit and 2) extracting informatio
about its behaviour in order to improve the performance furth
Even inaccurate simulators, where the exact delay of ea
component is not known, can be used to extract reasona
comparative performance results, giving a good idea if a
optimisation would have a positive or a negative effect.

3.2. Slowest Path Extraction
This paper introduces the concept of aslowest path. The slowest

the
tes
t to
the
ut
est
ch
of

the
ath

ple
al
ter)
he
f a
cle,
ec)
the
he

o
the
he
as

but
s as
be

he
ter
is
be
th,
ute

est
hat
am
ced
the
ny
ber
he
ble
path follows the actual sequence of transitions which accumulated
into the delay of the system during the full benchmark. This is
different approach from determining the critical path in a
synchronous system because the analysis required to find the
slowest path need not be exhaustive. Such a restricted analysis
allows it to rapidly observe average case performance (rather than
worst case). A slowest path is allowed to pass through any unit as
many times as is required. This enables the approach to extract the
path from long multi-cycle operations and thus also observe the
signal interactions in latches as well as logic. The method of
extracting the slowest path is loosely based on static timing
analysis.

In static timing analysis each wire in the system is marked with
the arrival time of the data in a worst case scenario. Once the wire
with the latest arriving time has been found the critical path can be
extracted. This can be done in a single pass over the circuit (marking
signal times can be done at the same time as identifying the
currently most critical path). For the sake of simplicity, in the
following example we will presume this is done using another pass.

To extract the critical path with a known end point, a path back
from that point towards the previous latch for the gate with the latest
arrival point at the end point must be found. This path passed back
through gates with the latest input arrival times until the output of a
latch is reached. The path follows a theoretical sequence of
transitions which could happen and so require the clock to have a
period longer than the delay of the critical path.

In the dynamic timing analysis, the end point of a simulation run
is the benchmark completion signal. In fixed time simulations any
signal which transitioned towards the end of the simulation run can
be picked. This end point is the last point in the slowest path. The
previous point in that path can be determined by finding which was
the last input to arrive to the transitioning gate. If this input would
have transitioned sooner the operation would have taken less time,
and so this input bears the ‘blame’ for the delay of the circuit. Blame
passes from gate input to gate input back through the path (hence
“blame passing simulation”) until the initial signal is reached
(usually the release of the reset).

Unfortunately, if only a single time is recorded for each gate, the
cyclic nature of the slowest path will cause that value to be
overwritten on each cycle of the simulation. Instead, the proposed
technique generates the slowest path forward rather than in reverse
during the simulation. As the simulation executes, each transition of
a gate is recorded, along with its cause, as the output of the gate
could become a part of the slowest path. Should its transition not
cause any subsequent gate outputs to change, the transition is
counted as adead end. This can now be forgotten as it can not form
a part of the slowest path. The recorded transitions keep a reference
counter in order to allow their removal should all transitions caused
by them have reached dead ends. Discarding dead ends prevents the
simulation memory footprint from growing out of control.

3.3. Slowest Path Analysis
The slowest path in any simulation represents the sequence of

transitions which accumulated to the complete delay of the
simulation. This shows the exact points where the optimisations
should be applied as applying optimisations in areas not passed
through by the slowest path would not effect the path and the
operation will still take the same amount of time. There are
exceptions to this rule: optimisations could cause a unit, not on the

path, to become slower and become a part of the path, causing
whole system to operate slower. The other exception is in ga
where a number of inputs which transition can cause the outpu
transition. Here the easiest target to focus on is to optimise
sequence of events which led to the transitioning of the first inp
which triggered the gate. It is possible to also shorten the slow
path by generating a new path through an optimised unit whi
feeds one of the other inputs which could trigger the transition
the gate before the original first input reaches it.

The optimisation to be applied to the units passed though by
slowest path can be determined by observing the route of the p
through known constructions.

4. Optimisations
To demonstrate a number of optimisations, a simple exam

circuit was designed. The circuit takes a number from an intern
constant source and decrements it (storing the result in a regis
until it reaches zero, at which point it reads a new number from t
constant source. Figure 2 shows the design which consists o
constant source (Const) which feeds a number to the unit each cy
a register (Reg) which holds the current value, a decrementer (D
which reduces the number by one, an OR gate which tests for
number being equal to zero and a multiplexer which picks either t
new value or the external constant to be written to the register.

The design was heavily pipelined to allow parts of the circuit t
reset in parallel with others processing. The shaded blocks in
figure show the placement of half latches which increase t
pipelining of the design. In addition to these, the decrementer w
vertically pipelinedto a single bit level (a half-latch placed on the
carry path between each bit slice). This may seem excessive
these latches should be treated only as possible latch location
any latches which restrict the performance of the design can
removed through one of the optimisations.

The circuit was simulated and its slowest path extracted. T
simulation is set to run for a fixed time of 100 000 gate delays, af
which a random signal which transitioned in the last time-slice
taken as the end point of the slowest path. The signal can
randomly picked as no matter which signal is chosen, the pa
within a small number of gate delays, converges into the same ro
as with any other signal selected.

One of the methods the designer can use to observe the slow
path (in order to find the bottleneck in the system) is to annotate t
path onto the schematic used to design the circuit or a diagr
which represents the design. In figure 3 the slowest path is pla
on top of a representation of the design. The arrows represent
transitions in slowest path. As the simulation executes ma
operations of the unit, the paths often take the same route a num
of times. In the figure, the thickness of the arrow represents t
number of times a particular gate crossing had occurred. Not visi

Figure 2: Decrementer circuit

ch
n to
g
ant

tch
ne

ng
uld
est

he
ct

est
ays
set
ing
e
e
5

he
as

s
re a

o
g.
the
ust
hind
e the
nal
nd
cept

ld
will

ly
on

ow
om
on the diagram is the distinction between the rising and falling
transitions.

The zoomed segment in the figure shows the a part of a sequence
of transitions which occupy the majority of the slowest path (77%).
These are falling transitions along the carry chain of the
decrementer.

In this benchmark the constant, which is loaded and
decremented, is large (232-1) with the simulation time
comparatively small and so the decrementer never has a long carry
chain dependency. The use of early output logic allows a fast
generation of a result as the carry signals can be generated locally
rather than needing to propagate the full length of the unit.

The generation of the result is not the bottleneck in this
benchmark. Instead, the circuit takes a very long period of time to
release the signals on the carry chain despite the fact the chain is
broken up into small one-bit segments. The root of the problem is
the construction of the half latches on the carry chain which prohibit
their outputs from dropping while their inputs remain high (after the
acknowledge has been applied). This dependency causes the full
carry chain to reset sequentially from the bottom and ripples the
release of the data signals through the entire unit. This problem can
be remedied using an early-drop latch[5]. This latch drops its data
outputs upon receiving an acknowledge even if the data inputs
remain high.

4.1. Early Drop Latch
The application of optimisations can be described by tables. A

positive effect of applying an optimisation can be predicted through
the observation of a frequently occurring sequence in the slowest
path passing through the element to be optimised. This path is
shown in the “Pos” column in each optimisation table. As each
optimisation has a possibility to cause a lengthening of the slowest
path, the “Neg” column depicts the path which, if observed in the
pre-optimised design, is likely to cause the optimisation to decrease
the performance of the system. The “Apply” column in each
optimisation table presents the optimisation to be applied. Figure 4
shows the table for the early-drop latch optimisation.

The early drop latch releases the request (data) signal as soon as
the acknowledge has been released rather than waiting for the
request on the input to fall. This optimisation is particularly
effective in circuits with the slowest path passing through many

latches on the falling data signal transitions (an example of whi
is the carry chain reset in the decrementer example). The patter
be matched for the optimisation to be effective is the down-goin
transition (dashed arrows) of a request out signal being depend
on the request in signal. Replacing the latch with an early drop la
would allow the release of the request out signal to be do
concurrently (before the request in signal is released).

An early drop latch does have an additional delay on the risi
transitions (solid arrows) of the data signal propagation and sho
not be used in situations where this frequently occurs in the slow
path.

4.2. Latch Removal
As mentioned before, the number of latches placed in t

example design is high and many of them will have a negative effe
on the performance of the design by adding latency to the slow
path. Removing a latch can reduce the cycle time by two gate del
(if the latch is on the slowest path in both the set and the re
periods). The danger in doing this is the latch may have been add
pipelining crucial to make the system free flowing. There is littl
way to determine which latches add pipelining which is useful to th
system from the slowest path and this is why the table in figure
has that entry missing.

Instead the optimisation system has to rely on a simulation of t
system along with the proposed optimisation to determine if it h
a positive effect.

4.3. Latch Insertion
In situations where insufficient number of pipelining latche

were placed in the design the optimisation system can spot whe
latch is separating two regions which are unable to store tw
different tokens due to the latch not providing enough decouplin
Only once the stage in front has completed its phase can it allow
stage behind to enter its next phase e.g. the stage in front m
complete its reset phase and accept the data from the stage be
before the stage behind can enter the reset phase and releas
data. Such situations can be avoided by inserting an additio
pipelining latch where the stage behind can commit its data (a
enter the reset phase) before the stage in front is not ready to ac
it. This can be seen in figure 6.

The danger of inserting latches is the addition of latency. Shou
the slowest path pass through the latch data signals, the path
become one gate delay longer for every pass.

The combination of latch removal and latch insertion effective
reproduces the effect of slack matching. The areas concentrated
by the slack matching techniques [9] (unbalanced pipelines) sh
up in the slowest path as recommendations to remove latches fr

Figure 3: Slowest path in the decrementer design

Figure 4: Early drop latch optimisation

Figure 5: Latch removal optimisation

Figure 6: Latch insertion optimisation

to
nly
so
8.
it
dd
s

l’
ugh
the

m.
use
he
his
eck

on
he
ers
he
g
o
unit
dly
er.
the
ew
of
cci
and
is
ads

or of

in
e in
ere
ted
e.

nce

rce
do
the over-pipelined path and to insert latches in the under-pipelined
path.

4.4. Anti-Token Latch
In early output circuits, it is often possible to generate the result

of a function without the presence of all inputs. Unfortunately, the
late unnecessary input must be synchronised with and
acknowledged to correctly group inputs. The anti-token latch [5]
allows a stage to acknowledge an input which has not arrived yet.
The latch then effectively holds an anti-token which propagates
back through the pipeline and removes the undesired token.

The slowest path in situations where a stage waits for the token
to arrive before acknowledging it passes through a latch from the
data input arriving to the validity output rising, signalling the latch
is ready to accept an acknowledge. The anti-token latch asserts the
validity signal before any data has arrived which exposes it to
receive an acknowledge before it holds any data to remove. Here an
anti-token is formed and the stage becomes free to process a new set
of inputs. Figure 7 shows the table for the anti-token optimisation.

The anti-token latch is larger and slower in a number of
transition sequences than an ordinary half latch. The negative effect
box in the figure shows just one of the routes which if exist in the
slowest path would gain an additional gate delay.

5. Results
To demonstrate the effectiveness of these optimisations they

were applied to three circuits and the performance improvement due
to each one was recorded. The performance of the original early
output design is presented (labelled “Early None” in the graphs),
along with the performance after the latch insertion and removal
optimisations (Early Half), early drop latch optimisations (Early
Drop) and anti-token optimisations (Early Anti). To give a good
comparison of the performance of the resultant circuits they are
compared with the synchronous equivalent (Synchronous) for
which the timing is determined by extracting the critical path. The
delay of the latching element and margins for clock jitter are not
factored in.

Also presented is a DIMS implementation generated from the
same design specification (DIMS None). The DIMS design cannot
take full advantage of the early-drop and anti-token latch
optimisations but the latch removal and insertion rules apply
equally to this design style and the result of these optimisations is
also presented (DIMS Half).

Each benchmark was run for 100 000 gate delays and the
number of operations executed in that time was recorded.

5.1. Decrementer Benchmark
The decrementer circuit has already been shown, and forms one

of the circuits upon which the optimisations will be demonstrated.
Because the circuit has behaviour dependant on the data being
processed, it is benchmarked with two different internal constant
values. The ‘Zero’ benchmark sets the constant to zero, which
causes it to continuously reload the constant. The ‘Full’ benchmark

decrements from the maximum (32 bit) integer which causes it
never load the number form the constant. The circuits were not o
benchmarked for use with the differing constant values but al
optimised with them. The results for the circuit are given in figure

The insertion and removal of latches optimisation in this circu
removes many of the latches in the carry path since they do not a
to the pipelining of the circuit and instead add latency. This yield
a 50% improvement in performance in both circuits. In the ‘Ful
benchmark, another large increase in performance is gained thro
the use of early-drop latches. The same effect was not seen in
‘Zero’ benchmark as it does not suffer from the same proble
Instead, a lot of additional performance was gained through the
of anti-token latches which were able to pass anti-tokens to t
decrementer once the value was loaded from the constant. T
decreased the reset time of the decrementer which was a bottlen
in the performance.

5.2. GCD Benchmark
The GCD benchmark determines the greatest comm

denominator of two numbers. To keep the design simple, t
numbers are restricted to 8 bits. The design comprises two divid
which only generate the remainder while discarding the result of t
division, two registers to record the current number pair bein
worked on, a comparator which determines either of the tw
numbers have become zero and a pair of internal constants. The
loads a pair of numbers from the constants and then repeate
divides them by each other each time recording the remaind
Eventually one of the numbers reaches zero and the result is
other number. In this benchmark, the result is discarded and a n
pair of numbers is loaded from the constants. The two modes
operation the design is worked on are: two numbers in the Fibona
sequence, and two zeros. The Fibonacci sequence numbers (223
144) require a large number of operations before the result
generated and a new set of numbers is loaded. The zero test lo
new numbers on each cycle as the greatest common denominat
two zeros cannot be determined.

The results of the optimisations on this circuit are shown
figure 9. The zero benchmark received a reasonable increas
performance due to the use of anti-token latches. These w
effective at removing the results of the unnecessarily execu
divisions and allowing the circuit to progress to the next phas
Because the placement of half latches was good, little performa
gain is attributed to the removal and insertion of half latches.

5.3. CPU Benchmark
The CPU benchmark uses the datapath of an open sou

microprocessor [10]. The control signals are attached to pseu

Figure 7: Anti-token latch optimisation

Figure 8: Decrementer benchmark results

DIMS None
DIMS Half
Early None
Early Half
Early Drop
Early Anti
Synchronous

 0

 1,000

 2,000

 3,000

 4,000

 5,000

FullZero

O
pe

ra
tio

ns
 E

xe
cu

te
d

ry
ate

an

he
n
er

of
me

ly
om
n
ed

ow
uch
as

ay
m
e
).

uit
-

,

.
-
ty

l-

),

-

-
s
s,

y,

-

n

-

s

random number generators which cause it to execute random
instructions. The memory stage is formed from a delay which is
triggered once all address inputs are present. The result of all
memory operations is always zero. The delay of the memory stage
is either zero for the ‘Zero’ benchmark or 50 gate delays for the
‘Long’ benchmark.

The results are shown in figure 10. Because the circuit was
already relatively balanced and tuned, in the Zero benchmark none
of the optimisations had a great effect. The DIMS circuit gained a
reasonable performance increase due to the latch removal. In the
Long benchmark, the anti-tokens were able to keep the design
executing during memory accesses, the results of which were not
requested by the register forwarding multiplexers. Instead, the
circuit continued to execute while allowing the memory access to
perform a delayed write to the register bank. The anti-token latches
placed in the register bank effectively generated a register locking
system where the registers which were not being written to
generated anti-tokens on their inputs and continued with the next
cycle of operation.

6. Conclusions
Blame passing dynamic timing analysis offers an insight into the

operation of a system which allows designer to make decisions
about the circuit based on actual system behaviour, rather than
making educated guesses about the effect of each alteration. The
optimization system automates this process and allows poorly
designed circuits to be balanced and offers even good designs
additional performance with its use of advanced latch designs.

The blame passing extensions to the custom gate level simulator
increased the simulation execution time by 30%. This is relatively
small and allows the system to simulate, optimise and re-simulate
in short cycles (about 3 seconds per cycle for each of the example
designs).

The optimisations performed on the example designs showed
cases where designers would be unaware of the real bottlenecks or

of possible optimisations. The decrementer circuit was ve
inefficient due to its long reset time. Engineers tend to concentr
on the processing periods rather than reset periods and so
inefficiency like this would be easily overlooked. On the CPU
example circuit, the addition of a register locking scheme by t
designer would require a lot of additional work. A simple versio
of this was constructed by the optimisation system with no design
input. The optimisation system, by replacing a small number
latches, managed to construct a conceptually complex sche
which increases the system performance.

6.1. Future Work
The optimisation system is currently very specific. Only ear

output and DIMS designs which have been specified in a cust
netlist format are allowed. Only a few optimisations have bee
specified and applied and the simulator can only execute in a fix
gate delay level setup. Future extensions to the system will all
different design methodologies such as bundled data pipelines (s
as Micropipelines[6]) and non-pipelined approaches (such
handshake circuits [12]) to be exploited.

The simulator will be extended to read more accurate del
models of components and allow extraction of the slowest path fro
the event logs of other simulators. Additional optimisations will b
added to the current set (stage retiming [11] and tree reshaping

7. References
[1] J. Sparsø and S. Furber, “Principles of Asynchronous Circ

Design”, Kluwer Academic Publishers, 2001, (ISBN 0-7923
7613-7)

[2] A. Bardsley, “Implementing Balsa Handshake Circuits”
Ph.D. Thesis, University of Manchester, 2000.

[3] S. B. Furber, J. D. Garside, S. Temple and J. Liu
“AMULET2e: An Asynchronous Embedded Controller”, Pro
ceedings of Async 97, pp. 290-299, IEEE Computer Socie
Press, 1997.

[4] R. B. Hitchcock, G. L. Smith, D. D. Cheng, "Timing Analysis
of Computer Hardware", IBM Journal of Research and Deve
opment, Vol. 26, 1, pp. 100-105, 1982

[5] C.F. Brej, “Early Output Logic using Anti-Tokens”, Twelfth
International Workshop on Logic and Synthesis (IWLS 2003
May 2003.

[6] I.E. Sutherland, “Micropipelines”, The 1988 Turing Award
Lecture, Communications of the ACM, Vol. 32, No 6, pp 720
738, January, 1989.

[7] W.J. Bainbridge, S. Furber, “Delay Insensitive System-on
Chip Interconnect Using 1-of-4 Data Encoding”, Proceeding
Async 2001, pp. 118-126, IEEE Computer Society Pres
March 2001.

[8] D.E. Muller, “Asynchronous logics and application to infor-
mation processing”, Switching Theory in Space Technolog
Stanford, University Press, Stanford, CA, 1963.

[9] Andrew M. Lines. Pipelined Asynchronous Circuits. MS The
sis, Caltech-CS-TR-95-21, 1995.

[10] C.F. Brej, “Yellow Star: A MIPS R3000 microprocessor on a
FPGA”, 2001

[11] S. Hassoun, C. Ebeling, "Architectural Retiming: An Over
view", TAU95, November 1995.

[12] K. van Berkel, "Handshake Circuits - An Asynchronou
Architecture for VLSI Programming", 1993.

Figure 9: GCD benchmark results

Figure 10: CPU benchmark results

DIMS None
DIMS Half
Early None
Early Half
Early Drop
Early Anti
Synchronous

 0

 500

 1,000

 1,500

 2,000

 2,500

 3,000

FibonacciZero

O
pe

ra
tio

ns
 E

xe
cu

te
d

DIMS None
DIMS Half
Early None
Early Half
Early Drop
Early Anti
Synchronous

 0

 500

 1,000

 1,500

 2,000

 2,500

 3,000

LongZero

O
pe

ra
tio

ns
 E

xe
cu

te
d

	Blame Passing for Analysis and Optimisation
	Charlie Brej
	Dept. of Computer Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
	cbrej@cs.man.ac.uk

	Abstract
	1.� Introduction
	1.1.� Early Output Logic
	Figure 1: Example early output circuit segment

	1.2.� Asynchronous Circuit Construction
	1.3.� Asynchronous Circuit Properties

	2.� Static Timing Analysis
	2.1.� Slack matching
	2.2.� Critical path extraction

	3.� Blame Passing
	3.1.� Simulation
	3.2.� Slowest Path Extraction
	3.3.� Slowest Path Analysis

	4.� Optimisations
	Figure 2: Decrementer circuit
	Figure 3: Slowest path in the decrementer design
	4.1.� Early Drop Latch
	Figure 4: Early drop latch optimisation

	4.2.� Latch Removal
	Figure 5: Latch removal optimisation

	4.3.� Latch Insertion
	Figure 6: Latch insertion optimisation

	4.4.� Anti-Token Latch
	Figure 7: Anti-token latch optimisation

	5.� Results
	5.1.� Decrementer Benchmark
	Figure 8: Decrementer benchmark results

	5.2.� GCD Benchmark
	Figure 9: GCD benchmark results

	5.3.� CPU Benchmark
	Figure 10: CPU benchmark results

	6.� Conclusions
	6.1.� Future Work

	7.� References
	[1] J. Sparsø and S. Furber, “Principles of Asynchronous Circuit Design”, Kluwer Academic Publish...
	[2] A. Bardsley, “Implementing Balsa Handshake Circuits”, Ph.D. Thesis, University of Manchester,...
	[3] S. B. Furber, J. D. Garside, S. Temple and J. Liu. “AMULET2e: An Asynchronous Embedded Contro...
	[4] R. B. Hitchcock, G. L. Smith, D. D. Cheng, "Timing Analysis of Computer Hardware", IBM Journa...
	[5] C.F. Brej, “Early Output Logic using Anti-Tokens”, Twelfth International Workshop on Logic an...
	[6] I.E. Sutherland, “Micropipelines”, The 1988 Turing Award Lecture, Communications of the ACM, ...
	[7] W.J. Bainbridge, S. Furber, “Delay Insensitive System-on- Chip Interconnect Using 1-of-4 Data...
	[8] D.E. Muller, “Asynchronous logics and application to information processing”, Switching Theor...
	[9] Andrew M. Lines. Pipelined Asynchronous Circuits. MS Thesis, Caltech-CS-TR-95-21, 1995.
	[10] C.F. Brej, “Yellow Star: A MIPS R3000 microprocessor on an FPGA”, 2001
	[11] S. Hassoun, C. Ebeling, "Architectural Retiming: An Overview", TAU95, November 1995.
	[12] K. van Berkel, "Handshake Circuits - An Asynchronous Architecture for VLSI Programming", 1993.

