Early Output Logic with Anti-Tokens

Charlie Brej, Jim Garside APT Group Manchester University

Outline

Asynchronous Logic

DIMS (Delay Insensitive Minterm Synthesis)

Early Output Logic

Guarding

Anti-Tokens

Collisions

Conclusions

Asynchronous Latch

Asynchronous Pipeline

Asynchronous Pipeline Stall

Dual-Rail Latch

Dual-Rail

00 = 'NULL'

01 = 0

10 = 1

11 = Illegal

Return to 'NULL'

DIMS Logic

DIMS vs Early Output Logic

Size:48 transistors

Delay:4 inversions

Size:12 transistors

Delay:2 inversions

Early Output Logic

Guarding

Problem:

Inputs

Late

Unnecessary

Acknowledge before ready

Solution:

Validity signal (Vo)

Early Output Guarding

Anti-Tokens

Don't:

Stall entire stage until late input arrives

Do:

Stall the latch instead

Early 'Validity'

Acknowledge before Data

Anti-Token Generation

Anti-Token Propagation

Token Pass

Anti-Token Pass

Token Anti-Token collision

Token Anti-Token collision 2

Dual-Purpose Signals

Arbiter free

Req:

Token Request

Anti-Token Acknowledge

Ack:

Anti-Token Request Token Acknowledge

Conclusions

New, fine-grain, asynchronous pipeline

Faster than DIMS (2x)

Smaller than DIMS (4x)

Lower power than DIMS

Some speed advantages over synchronous designs

Counterflow - no arbitration

Requires some timing assumptions

Timing Hazard example

IWLS 2003, May 30

THE UNIVERSITY & MANCHESTER Early Output Logic with Anti-Tokens

Slide 21/20