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Abstract

Delay-insensitive dual-rail and bundled data design
methodologies are the two main approaches used for the
creation of asynchronous circuits. Bundled data allows the
creation of fast, low overhead circuits, whereas dual-rail
allows bit-level pipelining and true average case
performance. This paper presents ‘Early output’ logic,
which combines the positive features of the two methods to
create faster asynchronous circuits. This method allows
the creation of circuits yielding performance faster than
synchronous counterparts.

Early output implementations allow logic to create
results before all inputs are presented. The results move to
the next stage, but the current stage stalls while waiting for
the late inputs to arrive simply to acknowledge them. This
unnecessary wait can be removed by allowing backwards
propagating ‘Anti-Tokens’ to remove the late inputs. The
use of anti-tokens and improved semi-decoupled latches
allows the removal of many stalls due to unnecessary
synchronisations, thus improving the performance of the
circuit.

1. Introduction

The four-phase dual-rail [4] approach returns both wires
to zero after each transaction. This allows fully quasi delay
insensitive circuits to be created which do not need to hold
state. Delay-Insensitive Minterm Synthesis (DIMS) is the
approach usually taken to create QDI circuits. It allows
logic to be constructed without the need for matched
delays. Unfortunately DIMS gates are large, slow and
power-hungry (fig. 1). Additionally, the four phase protocol
forces each stage to waste as much time returning to zero
as it used to calculate the data. Although DIMS works very
well in creating bit-level pipelined and perfect average
timed circuits, the gates are too slow to compete with other
design styles.

2. Early output logic

Early output logic addresses some of the problems in

DIMS logic to create fast circuits whilst preserving man
of its beneficial properties.

Many of the problems in the DIMS approach are caus
by the gates trying to manage the timing as well as the log
of the function. By separating the timing and logic parts o
the circuit (and losing the ‘QDI-ness’), a faster circuit ca
be created, as demonstrated with Phased Logic. T
communication protocol remains QDI and timing
assumptions are only applied in local logic.

DIMS gates are large and slow due to the C-elemen
required to ensure the output only rises when all inputs a
valid and falls only when they both return to NULL. If these
restrictions are moved into separate guarding logic t
gates can be much smaller and faster.

Effectively all the gate is now required to do is to execu
the logical operation on the dual-rail inputs. Figure 1 show
an early output OR gate compared with its DIMS
counterpart. The delay through the gate is equal to that o
single gate stage.

Figure 2 shows the output of DIMS and early output O
gates. The early output gate outputs early in two cas
(marked with a *). Although this is beneficial because th
result arrives at its destination sooner it does not ensure t
all inputs have arrived.

Figure 1: DIMS and Early output OR gates

DIMS OR
0 N 1

0 0 N 1

N N N N

1 1 N 1

Early Output OR
0 N 1

0 0 N 1

N N N 1*

1 1 1* 1

Figure 2: DIMS vs early output behaviour
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A DIMS gate:

1) outputs NULL when all inputs are NULL.

2) executes the required logical operation.

3) only outputs a valid value when all inputs are valid.

4) only returns to NULL when all inputs are NULL

The early output only has properties 1 and 2, so some
other mechanism must be provided to ensure correct
operation.

2.1. Guarding

Property 3 (above) ensures that only when all inputs into
a stage are valid will the result become valid. In an early
output logic system this is undesirable. Instead the
requirement is merely that all the inputs must have been
asserted before they can be acknowledged.

Figure 3 shows an example of an early output pipeline
stage. Two levels of C-element are used to guarantee
operation. The first C-elements (C1 and C2) are adjacent to
the output latches; these ‘guarding’ C-elements produce an
acknowledge when the output latches have captured the
input data – the timing of which is implicit in the (grey) data
signals – and all the contributing input stages have output
valid data. These then signal an acknowledgement to the
input latches. This ensures that a latch will not receive an
acknowledge until it is ready and raises it has output data.

The second set of C-elements ensures that all the latches
the data has been sent to have acknowledged before the
input latch may change. In many cases (such as C4 in fig.
3) these elements may be degenerate and can be removed
and in other cases optimisations are possible.

These C-elements also ensure that all relevant latches
achieve a NULL state in between data values (property 4,
above).

This mechanism requires an additional ‘valid’ (Vo)
signal to accompany the data assertion. In a four-phase,
dual-rail system this may simply be provided by an OR of
the input bits. This signal may already be available within
the latch controller (see fig. 6).

There is a hazard introduced by this approach in that

late-arriving (unnecessary) data will begin to ripple throug
the logic in parallel with its ‘valid’ signal triggering its
removal. It is therefore necessary for the logic designer
ensure that this ‘runt’ data does not both survive and ha
a sufficient delay for it to reach the an early output gate aft
the other inputs have returned to NULL. In this
circumstance a false data packet could be introduc
However the timing constraints on this appear to be fair
easy to meet.

2.2. Early output states

Early output gates may output a value before all inpu
are valid. This increases the speed of computation. The
early output states allow the result to move to the next sta
while current stage waits for all inputs to arrive befor
acknowledging them. A good early output design will us
as many of these early output cases as possible. Figur
shows a possible design for a dual-rail 2:1 multiplexe
along with its truth table. Although the design is correct
does not capture all early output states.

Figure 5 shows an improved design which catches tw
extra early output cases. This circuit will be able to crea
a valid output if both data inputs are equal and thus t
select input is irrelevant.

By rearranging logic it is often possible to create circui
which capture more of the early output cases. Circuits w
more early output cases will stop and unnecessarily wait
late inputs less often.
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Figure 3: Guarding example
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Figure 4: Early output multiplexer design
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Figure 5: Alternative multiplexer design
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3. Semi-decoupled latches

Although gates can output results early, guarding logic
ensures that a pipeline stage waits for the late inputs before
acknowledging. During this time the data on the output is
valid and will remain so until the last input arrives. This
stops any subsequent stages from moving more than half a
cycle ahead. The later stages can calculate the result with
the input just fed to them but, after entering the reset phase,
they will wait for the input to return to zero. This takes time
and, ideally, the stage should be allowed to work on the next
set of data.

A latch between the stages could remove the value from
the input to allow the stage to complete the
acknowledgement. This latch would have to wait until the
input has returned to zero before continuing to pass data.
These are the properties of a semi-decoupled latch.

Figure 6 shows the standard dual-rail latch design [3]
which has been adapted for use in early output logic. The
OR gate is used to both provide an acknowledge backwards
and a validity forwards.

Figure 7 shows a commonly used dual-rail semi-
decoupled latch. The data outputs of a semi-decoupled
latch will fall once the acknowledge signal reaches it, even
if the input data has not returned to zero. The component is
much more complex than the standard dual-rail latch, and
it requires a C-element to store some state. The state
holding C-element fires when the output signal is
acknowledged. It remains on until the data C-elements have
returned to zero.

The semi-decoupled property of the latch is required to

make circuits with less internal synchronisations
Unfortunately, the cost in performance and area of th
above design is very high.

3.1. Early output semi-decoupled latch

A cheaper semi-decoupled latch is required to allo
circuits to operate with fewer synchronisations. All latche
used by early output circuits described in this paper outp
a validity signal. The Vo (Valid out) line is connected
through C-elements to the Ao (Acknowledge out). Th
allows the data signals to drop but the Ao line will remai
high until Vo has dropped. This stops the stage fro
completing the acknowledge but later stages can compl
the cycle and start a new one.

Using early output logic it is safe to force data to zer
and still ensure the stage does not complete t
acknowledge phase. Figure 9 shows a much cheaper se
decoupled latch design. The cost of the two AND gates
very low. The latch also is faster to react to acknowledg
signals. Due to the sequencing of the transitions, each of
AND gates can be implemented using only two transisto

Data out lines (Ro_0 and Ro_1) are driven high when t
C-elements switch high, and low when the acknowledg
becomes high. Due to this strict sequencing, the AND ga
can be created with a P-type pass transistor, to propagate
data when the acknowledge is low and an N-type transis
to force the signal to ground when the acknowledge is hig

4. Anti-Tokens

In early output circuits the ‘valid out’ (Vo) signal can
delay a transition on the acknowledgement signal until t
latch is ready to accept it. Normally it is used to delay th

Figure 6: Standard dual-rail latch
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Figure 7: Standard semi-decoupled latch
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Figure 8: Vo to Ao connection
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Figure 9: Early output semi-decoupled latch
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acknowledgement until the latch has some data to destroy,
or to prevent the acknowledgement from being released
until the latch has finished returning to zero. In the semi-
decoupled latch the direct relation of the data output to the
validity signal is broken. The valid signal no longer states
the condition of the outputs but is used to control the
acknowledge signal.

By asserting the valid signal before outputting any data
the latch opens itself to receive an acknowledgement. This
will happen in early output cases. Normally latches are not
ready to receive an early acknowledgement as they do not
have any data to destroy. If the latch were to deliberately
raise the valid signal and receive an early
acknowledgement, the correct action by the latch would be
to destroy the next token it receives. It can then release the
validity signal and allow the stage to continue working on
the next set of data tokens. The latch is now in a state where
it will to destroy one token and then resume operating
normally. This can be thought of as holding an “Anti-
Token”. As a latch can only hold one anti-token it has to
prevent the following stage from giving it another early
acknowledgement. This is done by simply not raising the
valid line early.

A latch can raise its acknowledge signal even before it
receives any data, as the acknowledgement will not reach
the input latches until they all raise their valid lines. A latch
holding an anti-token can acknowledge early but has to
keep the acknowledge high until all inputs raise their valid
lines and the guarded acknowledge has activated. This is
because the latch cannot sense if the stage moved to the
reset phase by only observing the data lines. The data lines
never went high so the latch can’t wait for then to return to
zero.

To allow the latch to snoop on the state of the previous
stage the guarded acknowledge line (Vi) is fed into the
latch. This allows the latch to send and receive early
acknowledgments.

4.1. Anti-tokens and logic

Anti-tokens can move backwards through logic as well
as FIFOs. Figure 10 shows a situation where an anti-token
has arrived at a logic stage where some of the inputs have
arrived. In such a case, if the remaining latches which have
no output data are anti-token latches, they will receive an
early acknowledge and accept an anti-token. The latches
with data will receive an acknowledge and reset to zero. If
any of the latches which do not hold a data token are not
anti-token latches and have not raised their validity early
then an acknowledgement cannot be completed until they
receive a data token. In early output logic, it is safe to mix
anti-token and non-anti-token propagating latches together,
as only latches which accept anti-tokens will be able to

raise their output validity early.
Early output logic generates anti-tokens in early outp

cases. The example in figure 11 shows a multiplexer w
only the data inputs valid. As shown in section 2.2, a 2
multiplexer can be designed so that in some cases it c
create a valid output before the select signal arrives. On
the result arrives at the output latch, it can the
acknowledge. If the acknowledgement passes through
guarding logic then all the latches which do not hold an
data will accept anti-tokens and the latches that do w
receive an acknowledge.

4.2. Anti-Token pipeline

Figure 12 shows an example of an early output circu
In this circuit the two data C-elements are abstracted to ju
one and are left outside the latch to allow easier descriptio
The C-element is driven by signal S from the latch contr
unit. The C-element is asymmetric because while pass
an anti-token the S signal is withdrawn before the da
arrives. This can cause the C-element to become metasta
and so the S signal instead resets the C-element whe
drops. The Ai signal is combined with Vo signal to creat
the guarded acknowledge. This can then be passed to
input latch as the Ao and to the output latch as Vi. The latc
also snoops on Ri and Ro signals. The Ri signal is observ
to ensure that the data C-elements are not re-enabled w
there is still data from the previous operation.

Figure 13 shows a Burst-mode machine description
the latch controller. State 0 is the initial state, in whic
outputs S and Vo are high while Vo and Ai are low. In stat
0 the latch is waiting for the sign of a token or an anti toke
If the Ro+ transition happens first the latch will go throug
states 1, 2 and 3 while passing a token. And if the Ao
arrives first then the latch will pass an anti-token by goin

Figure 10: Anti-token propagation through logic
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4.3. Anti-token latch behaviour

Figure 14 depicts the operation of the anti-token latch
when passing a token. In state 0 both S and Vo signals are
high and so both the data and the guarding C-elements are
primed to fire. In this example the data C-element will fire
first and raise Ro. The latch then moves through a token
passing action similar to that of standard dual-rail latches.
The only difference being that dropping the S signal
directly forces Ro to drop, even if Ri is still high. Instead of
waiting for Ro to drop, Ri is tested directly to check it has
returned to zero before releasing the acknowledge. This
gives the latch a semi-decoupled behaviour.

The anti-token pass is much simpler than the token pass.
In figure 15 the latch receives the Ao+ transition first. Ao+
causes S to be withdrawn. As during the anti-token pass the
transitions on S are not observed, and so the circuit is not
QDI. Once S is low any data trying to pass into the latch will
be ignored. Because Ro could rise just before S drops whilst

passing an anti-token, the data C-elements must
asymmetric. This allows the falling of S to force the outpu
low even if Ri is high. As this can cause a short glitch o
the data output the system has to rely on some timi
assumptions. The depth of the pipeline stage that a glit
can propagate through must be shorter than the reset cy
time.

There is no need for arbitration in the circuit as either o
the two initial transitions (Ro+ or Ao+) will have the same
effect (Ai+). The anti-token pass is equivalent to the toke
pass with the exception that during a token pass the la
waits for the data lines to drop before continuing. As th
data lines remain low during an anti-token pass, no stall
required.

4.4. Anti-token latch schematic

The anti-token latch can be synthesized from th
Minimalist description or by hand. Figure 16 shows
schematic of the latch, synthesized by Minimalist[9] an
then optimised by hand. The circuit is only slightly large
than the standard semi-decoupled latch and still keeps
semi-decoupled property.

Figure 12: Anti-token FIFO
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Figure 13: Description of the anti-token latch
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4.5. Anti-token/token collisions

Figure 12 showed a simple pipeline along which tokens
and anti-tokens can flow. A token and an anti-token can
collide across any latch or logic. If they collide across logic
then the input latch assumes that its data is being
acknowledged and the output latch assumes that the anti-
token was being accepted. As the output latch passing the
anti-token resets the data C-elements it does not listen to the
data lines.

If the collision happens across a latch then there are two
different scenarios. If the anti-token arrives first (Ao+) then
the S line drops and the latch refuses to listen to the data
lines. The latch then proceeds to acknowledge the input so
the collision happens across the logic of the previous stage.

If the token arrives at the same time as the anti-token
then the Ro lines could raise and soon after fall again. This
glitch can last for less than a single gate delay. The rogue
signal will then travel through the logic and even if it
reaches the output latch then the signal will be ignored. If
the logic stage is very deep then timing assumptions need
to be met for the circuit to operate correctly.

5. Results

Figure 17 shows the gate delay count of all latches
shown. The units are measured in gate delays of the
optimised versions of the latches. C-elements require 2 gate
delays to switch and the optimisations remove the need to
invert the Ao line.

The early-output semi-decoupled latch gives much
improved results over the standard semi-detached latch.
Ao↓ to Vo↑ delay is two times smaller and the overhead
over the original design is so low that it seems beneficial to
use the early-output latches as a standard latch throughout
most designs. The anti-token latch is also only marginally
slower and in the case of Ao↓ to Vo↑ it is actually faster
than any other latch. The only problem with using anti-
token latches as standard is their size.

6. Conclusion

Early output logic looks very promising when compared
with synchronous designs for speed. It is important to
remember that although the speed improvement might be
sought after, the area and power consumption costs are very
high.

Early output logic is the basis to create better features
such as improved semi-decoupled latches and anti-token
latches. Although these latches look very beneficial, further
work must be conducted to show where they should be
placed in a design to gain a positive effect.

Early output circuits require some timing assumptions in

the logic part of the circuits. This can be easily met if th
logic functions are less than 4 inversions deep. Th
restriction requires very fine grain pipelining. A method o
finding these timing requirements and reorganising t
logic, placing delay lines or adding extra inputs to guardin
C-elements is required to allow a more flexible designs.
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Figure 17: Transition delays

From To Original Standard
S-D

Early
output

S-D
Anti-token

Ri_?↑ Ro_?↑ 2 3 3 2

Ri_?↑ Ai↑ 3 3 3 4

Ri_?↑ Vo↑ 3 4 3 N/A

Ao↑ Ro_?↓ 2 2 2 2

Ao↑ Vo↓ 3 4 3 5

Ao↑ Ai↑ N/A N/A N/A 2

Ri_?↓ Ai↓ 3 3 3 4

Ri_?↓ Vo↓ 3 N/A 3 4

Ao↓ Ro_?↑ 2 5 3 2

Ao↓ Vo↑ 3 6 3 2

Token Pass 14 20 16 19

Anti-Token Pass N/A N/A N/A 16

Transistor count 24 42 28 41


	Early Output Logic using Anti-Tokens
	C.F. Brej and J.D. Garside
	Dept. of Computer Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
	{cb,jdg}@cs.man.ac.uk


	Abstract
	1.� Introduction
	2.� Early output logic
	Figure 1: DIMS and Early output OR gates
	Figure 2: DIMS vs early output behaviour
	1) outputs NULL when all inputs are NULL.
	2) executes the required logical operation.
	3) only outputs a valid value when all inputs are valid.
	4) only returns to NULL when all inputs are NULL

	2.1.� Guarding
	Figure 3: Guarding example

	2.2.� Early output states
	Figure 4: Early output multiplexer design
	Figure 5: Alternative multiplexer design


	3.� Semi-decoupled latches
	Figure 6: Standard dual-rail latch
	Figure 7: Standard semi-decoupled latch
	3.1.� Early output semi-decoupled latch
	Figure 8: Vo to Ao connection
	Figure 9: Early output semi-decoupled latch


	4.� Anti-Tokens
	4.1.� Anti-tokens and logic
	Figure 10: Anti-token propagation through logic
	Figure 11: Anti-token generation

	4.2.� Anti-Token pipeline
	Figure 12: Anti-token FIFO
	Figure 13: Description of the anti-token latch Burst-mode machine

	4.3.� Anti-token latch behaviour
	Figure 14: Token passing
	Figure 15: Anti-token passing

	4.4.� Anti-token latch schematic
	Figure 16: Anti-token latch schematic

	4.5.� Anti-token/token collisions

	5.� Results
	Figure 17: Transition delays

	6.� Conclusion
	7.� References
	[1] J. Sparsø and S. Furber, “Principles of Asynchronous Circuit Design”, Kluwer Academic Publish...
	[2] K. Van Berkel, F. Huberts and A. Peeters, “Stretching Quasi Delay Insensitivity by Means of E...
	[3] S. Furber and P. Day, “Four-phase micropipeline latch control circuits”, IEEE Transactions on...
	[4] D.E. Muller, “Asynchronous logics and application to information processing”, Switching Theor...
	[5] D.H. Linder and J.C. Harden, “Phased Logic: Supporting the Synchronous Design Paradigm with D...
	[6] R. B. Reese, M. A. Thornton and C. Traver, “Arithmetic Logic Circuits using Self-timed Bit-Le...
	[7] R.F. Sproull, I.E. Sutherland and C.E. Molnar, “Counterflow Pipe-line Processor Architecture”...
	[8] C.F. Brej, “An automatic synchronous to asynchronous circuit convertor”, 11th UK Asynchronous...
	[9] R. Fuher and S. Nowick, “MINIMALIST: An Environment for the Synthesis, Verification and Testa...



