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Abstract

Asynchronous logic has for some time been promoted as being able to take advantage of
average case performance. Unfortunately the overheads of using asynchronous
techniqgues, such as the return to zero phase and unnecessary synchronisations, have often
outweighed the benefits. The aim of the research described is to take full advantage of the
performance benefits attainable through the use of asynchronous methodologies, then to

overcome the overheads introduced.

The thesis introduces the Early Output design methodology which allows the generation
of circuits which synchronise the production of outputs with the minimal set of inputs,
thus generating the result as soon as possible. The throughput problem is tackled through
a series of optimisations. The optimisations allow the removal of unnecessary
synchronisation points which degrade performance. One novel optimisation is the anti-
token latch which allows further improvements in performance by inhibiting operations

once their results are found to be unnecessary.

To determine where the optimisations should be applied, a novel dynamic analysis
technigue was developed. This targets improving average case performance through
simulating the design running a benchmark and attaining the Slowest Path (a sequence of

elements which contributed to the delay of the simulation run).

The effect of the optimisation is demonstrated on a range of circuits presenting each

optimisation’s applicability to various commonly used structures.

The result of these techniques is a system capable of generating circuits which generally

perform faster than their synchronous equivalents.
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Chapter 1: Introduction

1.1 Justification

For a number of years the VLSI design community has been looking towards
asynchronous logic to solve some of the problems that arise when using global clocks on
very large circuits [1]. There are some advantages inherent in asynchronous circuits over
their synchronous counterparts. Lower emissions of electromagnetic noise [2][3][4], no
clock distribution (saving area and power) [5], no clock skew [5], robustness to
environmental variations (e.g. temperature and power supply) or transistor variations,
better modularity [6] and better security [7][8] are just some of the properties for which
most asynchronous designs have shown advantages over synchronous designs. The
ability to show these advantages over synchronous designs in a number of properties has
been demonstrated. Low power, low latency [9][10] and high throughput [11] are three
properties which have been claimed but need to be specifically targeted in order to exploit
them at the expense of the others. It is important to distinguish the difference between
throughput and latency rather than just calling them performance. The Amulet group has,
in the past, created three low power microprocessors using low power asynchronous
techniques [2][13]. Others have used fine grain pipelining to achieve high throughput at
the cost of latency and power consumption [11][12]. By trying to exploit all three
properties the final design will hold little if any advantage over the synchronous
implementation. Alternatively by trying to exploit just one of these properties it is

possible to gain it at cost to the others.

» The power consumption of synchronous circuits is often higher than asynchronous
equivalents as the full global clock network has to be driven at a very high rate and
many pipeline stages are executed in instances where the result is not desired
[2][10].

Chapter 1: Introduction 11



1.2 Synchronous logic

* Low latency can be achieved by exploiting the average case performance presentin

some asynchronous circuits [14].

» High throughput is present in circuits with very high density pipelining, which is

made difficult by the presence of a global clock skew.

1.2 Synchronous logic

The basis of computing is combinatorial logic which takes a set of inputs and, depending
on the state of these inputs, generates appropriate outputs. For very simple systems which
perform only one function and do not keep state this is sufficient. More complex systems
require some form of timing to partition the circuit temporally. The partitioning allows a
single piece of combinatorial logic to be used for several different operations (e.g.
different operands being passed though an ALU) or keep state and use the results of the
previous operation as the next set of inputs (e.g. a cyclic multiplier). The alternatives to
using such schemes are usually not realistic (e.g. creating a separate ALU for each
executed instruction in a fixed program). The timing in the system can come from a

number of sources.

Synchronous circuits rely on external timing to determine the completion of each pipeline

stage and registers to stop data from one stage overwriting the data in the next stage.

1.2.1 Synchronous logic construction

In the diagram of a synchronous circuit (Figure 1.1) the clock net is connected to every
flip-flop. As the clock ‘ticks’ the data changes from being the results of one stage to the
inputs of the next, this construction is called a pipeline. Pipelines not only divide the
system temporally but also spatially. A large operation, which has already been recycled
temporally by passing different data though it, can also be divided spatially by allowing
many operations to pass though different parts of the unit at the same time. This is a
common method of increasing throughput at the penalty of latency due to the added delay

of the latches.

Figure 1.2 shows how data moves from one stage to the next by shifting all data to the

next stage at the rise of the clock. A global clock is used to ensure that sufficient time is

Chapter 1: Introduction 12



1.3 Asynchronous circuits

given for the result to be correct by the time it is accepted by the next stage and a stage

holds only one data entry.

Global Clock
D-type D-type D-type D-type
—flip-flop flip-flop—1 flip-flop flip-flop~>
Stage 1 Stage 2 Stage 3 Stage 4

Figure 1.1: Synchronous pipeline

1.2.2 Synchronous pipeline properties

In figure 1.2 the coloured blocks represent a series of operations passing through a
pipeline. The shaded areas of each stage represent the stage having completed its logical
operation and the result being valid but waiting for the clock before it can move to the next
stage. For example, when ‘D0’ passes through Stage 1 its result is ré/ady‘ a clock

cycle before the next clock edge arrives. During this time, the data is unable to progress
to the next stage. When ‘DO’ passes through Stage 3 it requires the entire clock cycle to
perform its operation. This operation passes along the critical path and if the clock
frequency was increased, circuit operation would fail because the result of the logical
operation would not be ready in time to be accepted into the next latch. These operations
may occur very rarely, but they force the clock to have a longer period in all cycles to
always guarantee correct operation. This critical path delay must be found for the worst
operating conditions of the circuit. This requirement usually degrades performance even

further.

1.3  Asynchronous circuits

Asynchronous logic is a very broad term which can be used to describe any circuit which

has the ability to keep and change state without the use of a global clock. Another

Chapter 1: Introduction 13



1.3 Asynchronous circuits

0 1 2 3 4 5 6 7 8 9
R N11aTCH I TN P TP I [ IR TP IR (PP [P T I [P I PR I Y |
Clock
Stage 4 D1 = D2 — D3
Stage 3 - D2= D3
Stage 2 % D3
Stage 1 D3

TimeE

Figure 1.2: Synchronous pipeline occupancy diagram

generally accepted term is “self-timed”. This is more descriptive of the nature of these

circuits as even asynchronous circuits synchronise.

1.3.1 Requirements of asynchronous circuits

As stated above the synchronous approach gives a timing reference which estimates the
completion of a stage and ensures the stages are separated. If the timing and data
separation properties can be reproduced without using a global clock it will allow the
pipeline to execute faster than worst case performance. Stage completion can be
determined in many ways: The easiest method is a matched delay; a series of gates
provides a delay to match the stage logic depth. When external variables such as
temperature or voltage slow down the circuit, this delay increases to allow the logic extra
time to resolve the result. A more complex method is to use a data dependent matched
delay which employs several matched delay lines, one of which is chosen depending on
the data or the operation conducted. For example, if an ALU stage executed a fast, logical

operation rather than a slow, arithmetic one then a shorter delay would be chosen.

The most precise method of completion detection is not to use matched delays but to use
the logic to create a completion signal. The last two methods allow the data dependent
speed improvements. Figure 1.3 shows an example of an asynchronous pipeline. The
global clock is replaced with a set of asynchronous pipeline control elements. Once new
data enters a stage, the request signal is generated on the wire labelled Reql in figure 1.3.

This signal goes through a matched delay, or is combined with a completion detection

Chapter 1: Introduction 14



1.3 Asynchronous circuits

signal, and, when the logic function has been evaluated, the request signal is emitted on

wire Req2. The data is now ready to be accepted for use in the next stage.

PR . Ack . . .

— Reqgl Regl , , .,

_,| Latch || Logic Latch || Logic Latch Logic Latch |,
Stage 1 tage Stage 2 tage Stage 3 Stage Stage 4

Figure 1.3: Asynchronous pipeline

This approach solves the completion detection problem but there is still the problem of
one piece of data overwriting another in the next pipeline stage. To solve this, an
acknowledge signal (Ack) is sent back to the requesting control unit to signal that it has
accepted the data and that stage can be used for the next data. In turn the data that has been
accepted is used in the next stage by emitting its request and the cycle then begins in the
next stage. This is calldsandshakingnd is used in asynchronous systems to guarantee

a correct transfer of information while making no assumptions in the communication

protocol on the delay of either the sender or the receiver.

1.3.2 Properties of asynchronous pipelines

Figure 1.4 shows an asynchronous pipeline executing the same computation as the
synchronous pipeline in figure 1.2, there are noticeable differences between the two
traces. Firstly, the asynchronous pipeline is faster as the optimisations described above are
implemented. The speed improvement is due to the completion of each stage being
determined on an individual basis rather than estimating the worst case delay of the

slowest stage (using a global clock).

Unlike the synchronous pipeline, there are two different types of stalls in the
asynchronous pipeline both of which were dealt with simply by using a clock in the
synchronous version. The first is demonstrated in stage 2 after DO has moved to stage 3.

Here the stage 2 hardware is ready to accept new data but D1 has not completed its

Chapter 1: Introduction 15



1.4 Aims of this research

function in stage 1. This isstarvationas the hardware has to wait for the data to become
available. In the figure this is demonstrated with the dashed lines across the stalling area.
The second type of stall is shown where D2 is trying to move from stage 1 to stage 2 but
the stage is not ready to accept new data as it is still processing D1. This béudesg

as the data is ready but has to wait for the hardware to become available. In the figure it
iIs shown with dashed lines across the stalling area with the data shading still present.
When the pipeline contains too few data elements then starvation is common and the
throughput is low. When the pipeline contains too many data elements then blocking
appears often and causes high latency. A balanced pipeline would have low latency and

high throughput and so avoiding these stalls is important.

0 1 2 3 4 5 6 7
Tlme IlllIllIIlllIllIIlllIllIIlllIllIIlllllllIlllIlllIlllIlllI
Stage 4 Starvation D1 £ D2 D3
Stage 3 D1 D2 D3
Stage 2 D1 D2 D3
Stage 1 D1 D2— D3
Blockinf ey

Figure 1.4: Asynchronous pipeline occupancy diagram

1.4 Aims of this research

From the advantages in performance, stated in the previous section, of asynchronous
circuits over synchronous counterparts it would seem clear that all well balanced
asynchronous circuits should operate much faster than synchronous designs. This
unfortunately is not the case and asynchronous circuits rarely reach the performance of
synchronous equivalents and even then this is only in structures particularly suited to the
asynchronous approach. This has caused the advantages in latency and throughput to be

generally dismissed by the synchronous community.

The latency advantage due to average case performance has never been fully

demonstrated. While the data dependent timing was included in the Amulet 1 [15] and 2
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1.5 Contributions made by this work

[2] designs, in the last version (Amulet 3 [13] which was targeting higher performance)
the data dependent delay was removed due to the complexity overhead outweighing any
latency advantage. Other systems [23], which use bit level flow control, attempt to exploit
unbalanced logical depth of individual outputs in stages to reduce latency. This
unfortunately requires the logic to be constructed from special gates which indicate the
completion of the result. These gates are so much slower than the normal gates and
generally enforce synchronisation of all their inputs which causes them to have overheads

which outweigh their advantages.

The throughput advantage has also been dismissed by the synchronous community.
Although asynchronous circuits could implement much finer grained pipelining, most
circuits concentrated on in this thesis suffer from a reset phase separating computation

phases and often wasting more than half of the system capacity.

The aim of this research was to exploit the potential performance advantages of the
asynchronous design methodology while tackling its weaknesses. The current
methodologies were evaluated and their weaknesses were targeted. Firstly, the latency
advantage was targeted and using the early output system this was improved. To do this,
power and area were not considered and all emphasis was only on the latency. Later, to
tackle the throughput problem the circuits have a series of optimisations placed on them
which remove unnecessary synchronisations through the use of anti-tokens and early drop

latches.

The combination of all these factors produces circuits which perform faster than their

synch ronous counterparts.

1.5 Contributions made by this work

The thesis presents the following advancements in knowledge in the field of

asynchronous logic:

» Early output circuit synthesis allowing stages to generate results before all inputs
are present. This includes the methodology, analysis of circuits constructed using

this method and a number of considerations when using the technique.
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1.6 Thesis Structure

* An understanding of the cause of missed early outputs where sufficient inputs are
present yet the stage does not generate a result. And a method of generating circuits

which avoid this kind of behaviour.

* QDI guarding of early output circuits to allows the generation of more robust

circuits.

» Demonstration and analysis of an anti-token like behaviour in backward safe
guarded circuits where late arriving inputs do not block the entire stage from

continuing to operate.

» Anti-token latch designs, behaviour of anti-tokens and their effectiveness.

* Novel dynamic timing analysis technique based on a blame passing method.

* Optimisation system based on dynamic timing analysis.

1.6 Thesis Structure

This thesis will present a method of improving the performance of four-phase
asynchronous circuits at the gate-level composition. Most of the methods presented
primarily target dual-rail circuits, but the application of the methods to other systems

(namely control circuits and bundled data) will also be presented.

The thesis does not deal with architectural or transistor level optimisations. Possible
timing hazards and the timing assumptions made will be shown but the full method of

avoiding hazards in highly timing variable technologies will not be presented.

The rest of the thesis is structured as follows:

Chapter 2 explains the fundamentals of asynchronous logic which are used throughout the

thesis.

Chapters 3, 4 and 5 all present the particular aspects of three design styles. These are

control circuits, bundled data, and dual rail.
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Chapter 2: Fundamentals of
Asynchronous Systems

The asynchronous design methodology is based on the use of handshakes to communicate
data. To enable hazard free operation, most of these handshakes make no assumptions on
the speed of each communicating unit. This ‘delay insensitivity’ can be extended to the
computing parts of the system. These constraints make the generation of logic very
difficult and so a series of less restrictive delay models have been defined for use in logic

synthesis.

2.1 Asynchronous protocols

Communication in asynchronous systems is achieved using handshake signals. These
handshakes are conducted between the source and the destination along two wires. A
request signal is driven by the initiator of the transaction and the acknowledge signal is
transmitted by the other end to signal the receipt of the request. The initiator can be either
the source or destination unRull channelhandshakes are initiated by the destination

while push channehandshakes are initiated by the source.

Although the handshake channel construction using request and acknowledge wires has

become standardised, there are two protocols commonly used on these channels.

2.1.1 Two-phase signalling

The two-phase protocol [17] uses signal transitions to indicate the request and
acknowledge messages. Each transition (alternating between up-going and down-going)
of the request wire is acknowledged by a transition of the acknowledge wire to match the

state of the request.
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2.1 Asynchronous protocols

Figure 2.1 shows the behaviour of the protocol on a simple push channel. The source
initiates the transaction by placing a transition on the request wire. Once the destination
has received the message it replies with a transition on the acknowledge wire. This
completes the transaction and the states of the request and acknowledge wires match once
again. Once the source observes the transition on the acknowledge wire, it is able to

initiate another transaction.

Req

Ack

DataXXX |

Figure 2.1: Two-phase protocol

2.1.2 Four-phase signalling

In single phase clocked synchronous systems, the flip-flops driven by a clock only update
the state of their data output on the rising (or falling) edge of the clock. Using latches
which trigger on both clock edges would allow the clock speed to be halved and hence
reduce the power consumption of the clock generation and distribution. Although it is
possible to create synchronous flip-flops which update their state on both edges of the
clock, thus reducing the power consumption of the design, most of these latch designs are
expensive as they effectively recreate a double speed clock internally to generate the

latching signal or duplicate the latching logic (one for each phase).

In asynchronous two-phase circuits, each latch creates a latching signal which transitions
at double the rate of its inputs or two latching elements are used. The four-phase protocol
takes this into account and communicates across the request and acknowledge wires using
level rather than edge sensitive signals. This causes the protocol to become somewhat

more complicated but allows the construction of latches to be greatly simplified.
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2.2 Delay models

Figure 2.2 shows the behaviour of a four phase latch [19]. The sequencing of the request
and acknowledge signals is the same as that in the two-phase protocol, but the data is now
communicated once every two transitions. Additionally, the four-phase protocol has a
number of schemes defining when the data is valid [18]. 84ty andlate data validity
schemes are used depending who has control of the bus on which the data is transmitted.
Early data validity scheme is used when the source controls the data bus and so places its
data on the bus and then sends a request to the destination to accept the data. The late
scheme is often used when the destination has control of the bus (in situations where many
‘slaves’ wish to communicate with one ‘master’) and the source must first place a request
to drive the data lines. Only once the request is granted, indicated by a transition on the
acknowledge wire, can the source drive the data lines. The tiodd scheme is often

used as a scheme neutral method of communication. Although the early and late schemes
are not compatible they can both receive data from a broad scheme source (assuming the

source has control of the data bus).

Figure 2.2: Early, Broad and Late Four-phase protocol

2.2 Delay models

Asynchronous circuits are often classified in order of the type of their ‘robustness’. More
robust circuits need less testing to ensure correct operation both during the design phase

and post production.
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2.2 Delay models

2.2.1 Delay-Insensitive

The ‘Delay-Insensitive’ (DI) class [20] is the most robust of all delay models. It makes no
assumptions on the delay of wires or gates. In this model all transitions have to be
acknowledged before transitioning again. This condition stops unseen transitions from
occurring. In DI circuits, any transition on an input to a gate must be seen on the output
of the gate before a subsequent transition on that input is allowed to happen. This forces
some input states or sequences to become illegal. For example OR gates must never go
into the state where both inputs are one, as the entry and exit from this state will not been

seen on the output of the gate.

Although this model is very robust, no practical circuits are possible due to the heavy
restrictions. This does not leave the model as useless as it is often used for communication
protocols despite the fact that communicating modules may not delay-insensitive. For
example the interaction between the request and acknowledge is delay insensitive as each

transition of each wire is acknowledged with a transition of the other wire.

2.2.2 Quasi-Delay-Insensitive

The Quasi-Delay-Insensitive (QDI) model is a compromise to delay-insensitivity with the
addition of isochronic forks[21]. Isochronic forks allow signals to travel to many
destinations and be acknowledged by only one. Isochronic forks are forks in wires where,
if the acknowledging target has seen a transition on their end of the fork, then the
transition is assumed to have happened on the other ends of the fork too. There are two
types of isochronic forks; the asymmetric type only ensures that the signal will reach the
acknowledging fork tip before or at the same time as it will reach the other; the symmetric
type ensures that both fork tips will be reached at the same time. Symmetrical isochronic
forks allow either of the targets to acknowledge the signal. In QDI circuits all forks have
to be either isochronic and acknowledged by one of the destinations, or acknowledged by

both destinations.

2.2.3 Q"DI

In the J'DI delay model isochronic forks can be extended through gates [22]. The n in

Q"DI represents the number of gates allowed in the extended isochronic forks. These are
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2.3 Fundamental asynchronous components

usually asymmetric as, with an increasing level of complexity on the two paths, it
becomes impossible to ensure symmetric fork behaviour. As the number of gates
increases the robustness of circuits drops and requires more rigorous testing to ensure that

the timing assumptions are maintained in the fabricated circuit.

2.2.4 Speed Independent

Speed-Independent (SI) [23] circuit design is one of the least robust models as it assumes
wires have no delay. This is increasingly difficult to justify with shrinking process feature
sizes. Designs manufactured in the latest process technologies have longer wire delays

than gate delays. Despite this the SI model is a popular delay model.

2.3 Fundamental asynchronous components

Construction of handshaking asynchronous circuits uses most of the generic synchronous
components with the obvious exception of clocked elements (combinatorial gates and
transparent latches). There are also a small number of additional elements which have
become standard in the implementation of asynchronous circuits.

2.3.1 C-elements

The Muller C-element [23] is a commonly used asynchronous component. It is used to
merge and synchronise signals switching its output only when all inputs have reached the

same state. Figure 2.3 shows the implementation and symbol of the C-element.
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Figure 2.3: Gate and transistor-level design of the C-element and its symbol
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2.3 Fundamental asynchronous components

Asymmetric C-elements have inputs which affect the operation of the element only when
transitioning in one of the directions (shown in figure 2.4). Asymmetric inputs are
attached to either the minus (-) or plus (+) strips of the symbol. When transitioning from
0 to 1 the C-element will take into account the common and the asymmetric plus inputs.
Similarly when transitioning from one to zero the C-element will take into account the

common and the asymmetric minus inputs.
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Figure 2.4: Gate and transistor-level designs of an asymmetric C-element and its symbol

2.3.2 Mutex

In asynchronous circuits arbitration is often required in situations where two requests
arrive asynchronously desiring access to a shared resource. As the signals can arrive at
identical times and only one of the requests can be granted, a hardware element is used to

guarantee the exclusivity of the grants.

The mutex(mutual-exclusion) element is used to arbitrate between two asynchronously
arriving signals. A simple gate level construction would involve two cross coupled
NAND gates. Each signal tries to block the other from being granted which in gate level
implementations can cause the outputs to become metastable if the signals arrive within
a gate delay of each other. This metastability will eventually resolve but in the meantime
the outputs of the NAND gates must pass through metastability filters. These keep both

outputs low until the metastability has been resolved.

The circuit in figure 2.5 shows a design of a mutex element [24]. The metastability filters

comprise a pair of inverters which will drive their outputs high only once there is a
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sufficient difference in voltage between the two outputs. This is done by attaching the Vdd

(power) signal of each inverter to the signal feeding its counterpart.

X R1+—>Gl+—>R1—>G]1-

Rl_,j3 ) RN N
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O T

Figure 2.5: Mutex element design and STG

2.4  Formal specification and synthesis

The synthesis of small asynchronous units can be conducted using the Petrify [25] tool
which as an input takes a “Signal Transition Graph” (STG). STGs are Petri net based

descriptions an example of which can be seen in figure 2.5.

The transition of each net is placed on the graph and these are then connected with arrows
signifying which events trigger the transition. The tokens present on some arrows in the
figure represent the initial placement which is the state of the graph at reset time. In the
figure there also is a ‘place’. A place is a space for a token which allows the token to move
to one (and only one) of its outputs. In the mutex STG this allows the formation of
mutually exclusive sequences of events. The place allows either the G1+ or G2+
transitions to happen but not both. When the G+, R-, G- sequence has completed a new

token is inserted into the place to allow another sequence to begin.

Further details of STGs can be found in the referenced material [25].
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Chapter 3:  Asynchronous logic

As well as the many asynchronous communication protocols there are also a number of
methods to encode the data in the communication channels. Bundled data and dual-rail
are two of the most popular and will be discussed later in this chapter. The basis of all
these protocols is exemplified in a system knowrcastrol circuits. Control circuits do

not pass data and can only pass empty messages. Control circuits can then be altered to

construct either bundled data of dual rail structures.

3.1 Control Circuits

Control circuits are asynchronously communicating networks which do not carry any
data. This makes their construction very simple but their use is limited due to their

inability to perform computation.

All computing circuits comprise two parts: storage elements (latches and flip-flops)
which store data and computing elements which then perform computation. These parts
alternate forming pipeline stages. In the case of control circuits no computation is done in

the logic stages and these are simply synchronisation points.

3.1.1 Tokens

Control circuits are incapable of passing data but the message handshake signals are
present even though the hardware associated with data transfer is not present. These
transfers can be thought of as tokens. Tokens can progress from one latch to the next and

can be split and re-converge with other tokens in logic stages.
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3.1 Control Circuits

3.1.2 Operation cycle

A stage using a four phase handshake protocol goes through 2 periods during each
operation. These are tlsetand theresetperiods. The set period encompasses the time
where the inputs to the stage are arriving as the acknowledge is low. The reset period of

a stage has the acknowledge high and the inputs start being removed.

Tokens need to be separated to stop their merging and becoming a single token. Between
the set period of each token a reset period is inserted. Each stage has to reset completely
before another set can begin to ensure that data from the previous cycle does not effect the

computation in the current cycle.

3.1.3 Latches

To pass tokens from one stage to another asynchronous latches are used to store the token
while it is progressing. Each latch handshakes the transaction of its token with the next
stage. These transactions are communicated across the request and acknowledge wires as

described in section 1.3.

Half Latch

The ‘half-latch’ is a simple latch design and is shown in figure 3.1. With a request-
acknowledge interface on both the input and the output, the latch forwards the requests
while acknowledging the input. The request out and the acknowledge in signals are only

released once the input stage has released its request and the output has acknowledged.

Ri_,? . Ro
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Figure 3.1: Half latch design

Al ¢

Chapter 3: Asynchronous logic 29
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This simple behaviour enables the latch to allow the input stage to drop to the reset phase
(releasing the request) while the output stage enters the set phase (request becomes
asserted). This is demonstrated in figure 3.2 where each latch separates a stage holding
data from a stage hosting a spacer. The half cycle separation enables the half-latch to store
half a token. Two half-latches are needed to store a single token (allowing the input and
output to the two latch pipeline to be sequenced as seen in the figure) as each latch can
only separate the phase of the input from the output by half a cycle. The front latch
separates the resetting phase stage in front of it from the setting phase behind it. The
second latch separates the setting phase in front of it from the resetting phase behind it.
The leading edge and trailing edge of the token can be separated by many latches,
allowing the token to stretch and shrink depending on the progress of the leading and
trailing edges. The sequencing of the latch forces the separation of the edges by at least
one logic stage. This ensures that tokens are kept separated (do not merge) and are kept

in at least one stage (do not die).

Spacer Data Spacer Data Spacer

Figure 3.2: Half latch pipeline token capacity

Semi and Fully Decoupled Latches

The half latch is only able to separate the data stage from a stage holding a spacer but some
latch designs are able to ‘decouple’ the two stages by more than one phase difference.
Figure 3.3 shows three levels of decoupling latches could be capable of. The first level is
‘no decoupling’ where the output of the latch is the same state as the input. Although this
behaviour is possible using a set of wires with no logic, it is important that any latch
design maintains this ability. The half decoupling behaviour allows regions with data to

be separated from regions holding a spacer. This is present in the half latch.

The third level of decoupling presented is the full decoupling where a latch separates

stages with the same state by fully enclosing a token or a spacer. Semi-decoupled latches
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3.1 Control Circuits

[16] can enclose either a spacer or a token while fully-decoupled latches can perform both

actions.

P g
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Figure 3.3: Levels of latch decoupling

3.1.4 Split

The transmission of a token to two or more latches requires the source latch to interface
correctly with more than one destination. While the request signal needs to be forked to
all destinations, the acknowledge signals from all destinations need to be combined to
generate the single acknowledge signal the source latch expects. The introduction of forks
in the request distribution requires that each transition of the request be acknowledged by
all destinations. Only after all destinations have acknowledged may the request transition

again.

A C-element can be used to combine all the acknowledge signals. It will ensure that all
destinations have acknowledged before forwarding the acknowledge to the source latch
(see figure 3.4). As the C-element is symmetrical to up and down transitions, it will wait
for all destinations to release the acknowledge before releasing its output. This ensures
that all destinations the request leads to have observed the signal before the request

transitions again.

3.1.5 Converge

Synchronisation of tokens is achieved by converging two or more pipelines into one. The
output latch will receive a request only once all input latches have presented their request.
The output latch has to acknowledge all input latches by sending each latch its

acknowledge signal. As described above both the rising and falling transitions on forked

Chapter 3: Asynchronous logic 31



3.1 Control Circuits

Cle__

Figure 3.4: Split example

signals have to be acknowledged. This again is done using a C-element to gather the

requests of all inputs as illustrated in figure 3.5.

R_,C

Figure 3.5: Converge example

3.1.6 Complex constructions

A single pipeline stage can both split and converge many signals. The rules specified

above are simply applied to a single block of combinatorial logic surrounded by latches

(stage).

There are two approaches to applying both split and converge rules in a single stage.

These are calledrouping and separating Of the two methods, grouping generally
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3.1 Control Circuits

generates circuits with lower power consumption and area, while separating generates

circuits with fewer synchronisations (and is thus faster).

Grouping

Grouping treats all inputs and outputs of a pipeline stage equally and ignores their
dependencies. This generates one request signal which is shared between all outputs and
one acknowledge signal which is shared between all inputs. The common request signal
is formed by gathering all request signals using a C-element. Likewise for the

acknowledge signal. This is demonstrated in figure 3.6.
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Figure 3.6: Grouping example

As all inputs and outputs are driven by the same request and acknowledge wire they
become synchronised. This can slow the circuit down as it is unable to exploit signalling

dependencies.

Chapter 3: Asynchronous logic 33



3.1 Control Circuits

Separating

The Separating method treats each latch individually and connects it only to co-dependent
latches. The request of each input latch is connected only through a gathering C-elements
to all latches that depend on its data. The input latch’s acknowledge signal is generated by
C-elements which gather the acknowledges of the dependent output latches. This

technique is illustrated in figure 3.7.
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Figure 3.7: Separating example

This approach only synchronises latches where necessary and allows the acknowledge of
tokens earlier than in the grouped version. The need for each latch to have two separate
C-elements to gather requests and acknowledgements creates a larger circuit. Fortunately
many optimisations can be carried out to reduce this impact: In cases where an input latch
contributes to only one output latch, the C-element will have to gather only one signal and
can be optimised away to a wire. Also, in cases where many latches at a stage have the
same set of dependants they can use a single C-element to generate a common request or

acknowledge signal.
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3.2 Bundled data

The bundled data system [18] allows communication of data in systems with token flow.
This also allows computation rather than just synchronisation. With the control part of the
system already described, the generation of full computing circuits requires only the data

communication and computation parts of the system.

Tokens are primarily designed as symbols representing data flow and systems such as
control circuits can be easily adapted to carry data. Control circuits announce the presence
of and negotiate the progress of tokens but data latching and computation requires

additional components.

3.2.1 Latches

To create bundled data latch designs, the control circuit designs are adapted by connecting
a data latch to the component. The latch enable signal is taken from one of the wires
available in the design or a logical operation of several signals. Depending on the wire
chosen the latch will have a different data validity period (early, broad or late explained

in “Four-phase signalling” on page 22).

A bundled data half latch is shown in figure 3.8. All three schemes for generating the latch
enable signal are presented in the figure but in a normal design only one is required.
Connecting the latch enable signal directly to the Ro wire will give an early data validity
and connecting it to the inverse of the Ro signal will give the late data validity where the
enable being high causes the latch to become opaque. The broad validity can be achieved

by latching on the OR of the Ro and Ao signals.

In the broad data validity scheme, the addition of the delay element, called the ‘bundling
constraint’ delay, ensures that the data has been presented on the output before request

signal is transmitted.

3.2.2 Logic

Logic in bundled data systems is constructed in much the same manner as in synchronous

circuits. Because the logic has delay, the request signal must be also slowed down in order
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Figure 3.8: Bundled data half latch

to ensure the output of the data processing logic has been calculated before being latched
to the next stage. This delay on the request signal is often referred tmatched delay

as it ‘matches’ the delay of the logic. The delay of the logic must be shorter than the delay
along the request line otherwise insufficient time would be allocated for the logic

operation.

As the delay is needed only on the rising transition, it can be constructed using an
asymmetric delay element. Such elements delay only one kind of transition (either the

rising or the falling) and leave the other transition with minimal delay.

The request and acknowledge gathering is constructed the same way as in the control
circuits (shown in section 3.1.6). The delay element can be placed either before or after
the request gathering C-element. If placed before the gathering C-element, the delay
element has to be replicated on every input into the C-element. This consumes more space
and power but does allow a more closely matched delay to be constructed. This is because
the effect of each input may take a different period of time to reach the output. Placing the
delay on the output of the C-element would force the delay of the stage to be the same
irrespective of the order of arrival of inputs. As it is often the case that the last input to

arrive has a short path to affect the output, the stage not completing until the worst case
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delay has passed can have a negative effect on the performance. An example of such a

technique is demonstrated in figure 3.9.

| ACrCD-F

Figure 3.9: Common delay

A compromise between the two approaches places the shortest input to output delay on
the output of the gathering C-element. The inputs which require a longer delay have

additional delay elements placed on their respective C-element inputs. This approach
gives both the accurate arrival time based delay along with reduced area and power

consumption.
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Figure 3.10: Separated delays
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3.3 Dual-Rail (DIMS)

Invented by D. E. Muller, th®IMS [23] (Delay Insensitive Minterm Synthesis) system

is an asynchronous design methodology making the least possible timing assumptions.
Assuming only the QDI delay model the generated designs need little, if any, time closure
testing. The basis for DIMS is the use of a one-hot code on a set of wires to represent data.
The most common number of wires used in sets for use in DIMS logic is two, where one
wire set represents one bit of information. Although other codes are possible and useful,

such as the 1-of-4 codes, only 1-of-2 codes will be examined here.

To enable the QDI operation of the system the request path is duplicated. Asserting one
of the request wires transmits one bit of information the value of which is dependent on
which request was activated. The data is acknowledged and the active request wire must
be de-asserted before the acknowledge is released. As the request signal is encoded on the

data, the dual-rail data encoding can only be applied using the early data validity

Req0

Reql

Ack %

Figure 3.11: Dual rail protocol

3.3.1 Latches

Dual rail latches are composed by duplicating the request path in the control circuit latch
designs. The new request signal names are usually suffixed with a 0 or 1 distinguishing

the value transmitted by each signal.
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Half latch

The half latch design described in section 3.1.3 is taken and its request path is duplicated.
This duplicates the C-elements in that path giving a C-element for each bit. In the control
circuit the ‘request out’ signal also drives the ‘acknowledge in’. In the dual-rail version
there are two requests out so they have to be merged in order to create an acknowledge in.
In this case as only one of the request wires will be active at a time and the acknowledge
should be activated once a request out is generated (irrespective of which one), the signals

will be gathered using an OR gate.
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Figure 3.12: Dual-rail half latch
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3.3.2 Logic

Logic in a DIMS system has to preserve the strict sequencing assumed by the latches.
DIMS logic performs two tasks: it gathers the request signals of all input latches that
affect the result and performs the logical operation. The output of a DIMS gate must not
generate a result until all inputs are present and not release the result until all inputs have

been released.

The standard construction of DIMS gates involves generating a full set of all minterms
from the inputs. These minterms are generated with C-elements and cover the full set of

legal input states. In the example of the two input gate, there are four minterms, one for
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each of the possible input states. Each output wire then takes a selection of these inputs
and generates the output when any one of them is activated. Each minterm must activate
exactly one output as ignoring the minterm will stop the gate from producing an output

and attaching it to more than one output will generate illegal output states.
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Figure 3.13: 2 input DIMS OR gate

The construction of larger gates becomes more problematic as the number of minterms
increases exponentially with the number of input§ énhd the number of inputs to each

minterm C-element matches the number of dual rail inputs. Figure 3.14 shows a four input
DIMS gate. Here there are 16 three input C-elements and a 15 input OR gate gathering
the results. This explodes the eight transistor synchronous equivalent gate into a 264

transistor DIMS implementation.

3.3.3 Bit-level pipelining

One of the useful aspects of dual-rail logic is its intrinsic ease of creddinpvel
pipeliningcircuits (demonstrated in systems suchliPr@ased Logi¢26]). In contrast with
the bundled data circuits, which usually use one latch controller to latch multiple bits of

data, dual-rail latches capture one bit of data each. Although bit-level pipelining is
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Figure 3.14: 4 input DIMS OR gate

possible in the bundled data designs the increased complexity of having a matched delay

for each latch makes the system large and slow.

Four-phase dual-rail designs present their completion at a bit level (and not a stage level
like common bundled data designs). This allows parts of the result to flow to the next
stage in the pipeline and be operated on before the complete result has been generated.
This behaviour makes designs, which use carry ripple adders frequently, faster as the
bottom parts of the result which are generated first are used by adders in subsequent
stages. This transfer of data from one stage to another in an ordered sequence (bottom bits
first then going up) is calledkewed wavefront pipelinindhe skewed wavefront allows
stages to disguise their high latency by ordering the inputs to come at the exact time they
are needed and generating the outputs in the same order. This gives ripple carry adders a
latency of a single bit full adder rather than the critical path of the full carry chain [27].
The practicality of skewed wavefront pipelines is reduced once the full value needs to be

de-skewed for operations such as memory accesses.
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Data travelling through dual-rail bit level pipelines not only becomes skewed when
passing through adders but can also pass through stages in an unordered manner should

the complexity of generating some bits be higher than others.

3.3.4 Vertical pipelining

Although the data passing through a ripple carry adder can generate some results before
others, the full stage must complete before the adder can work on the next data inputs.
This effectively de-skews the data as the bottom bits of the next set of values cannot enter
a adder stage while the stage is completing. This can be avoided by pipelining the adder
into a a series of smaller blocks separated from each other by latches. Vertical pipelining
allows a small section of the adder to complete while the rest of the adder is only starting
to compute. This not only reduces the reset period by allowing the different segments to
complete in parallel, but also frees the bottom segments to start computing on the next set
of data. Vertical pipelining also increases the overall pipelining of the system which is
important to stop data from stalling due to blocking (explained in “Properties of
asynchronous pipelines” on page 15). As well as adders, other constructions have been

made using the vertical pipelining style such as register banks [28].

3.3.5 Empty latches

Blocking is a big problem in four phase circuits as the circuit often spends as much time
resetting as working on the data. This forces each stage which feeds back to itself to waste
half the time resetting. In the vertical pipelining example above, the insertion of latches
to break up the adder into a set of smaller segments allows parts of the stage to compute
while other parts reset. The latches arepty latchess they do not hold a token at reset
time. The insertion of empty latches is necessary for building fast four-phase circuits as
the stages need to be split into two or more balanced segments to create a pipeline with

few data stalls.
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Both synchronous and asynchronous bundled data designs do not take into account data
operated on when forming the timing of the operation. In synchronous designs the delay
used for each operation is fixed (in synchronous circuits all inputs arrive at the same time)
and in bundled data it is fixed to the arrival of the last input and is irrespective of the
complexity of the task being carried out. This forces each stage to assume a worst case
delay before completing. DIMS logic elements, due to their restriction that all inputs must
be present before generating an output, consume a worst case delay during each

execution.

To capture the performance potential of average case performance fully, the timing must
be data dependent and the generation of results must be allowed before all inputs are
present [24][29][30][31][32][33][34][35][36][37].

4.1 Early Output Theory

Many functions can generate the result based on the data from only a subset of inputs but
often it is impossible to determine which inputs must be supplied to a stage to yield a
result. In push channel communication the data is supplied even if it is not necessary to
the unit it is supplied to. Speculative supply of data to a unit is often unavoidable as its
necessity often cannot be easily determined. The synchronisation between the generation
of the output and the late arriving data which is not needed to complete the operation has
a negative effect on the performance of a system. Generating a function’s output
irrespective of the arrival of data on all inputs can allow faster operation but still generate

the correct result.
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4.1.1 Determining input necessity

The input set gathered to trigger the output generation can be limited to just the necessary
minimum. This set can be determined by observing the presence of inputs and their data.
The necessity of data inputs can be determined in one of three manners: data independent,

data dependent and data co-dependent.

Data independent

The data independent method relies only on the presence of other inputs and not their data.
Once an input threshold has been met the stage can complete. This method is only useful
in redundant computing where the result can always be generated even in the absence of
at least one input. An example of such a scheme would be in having two implementations
of a functional unit, each performing the same task with the same data but using a different
algorithm. A data independent stage would be useful to pass out the first result generated
by one of the units and thus achieve the best performance through using each unit for

operations better suited to it.

Data dependent

A multiplexer always requires just one of its data inputs to arrive (as well as the select
signal) to generate an output. The desired input is encoded in the select signal which is
observed to determine the necessary input set. This data dependency uses the data of an
always necessary set of inputs. The other inputs are gathered but their necessity can be

determined before their arrival.

Often, in situations like this, the data channels are implemented using pull channels and
only the desired input is fetched. This optimisation allows the data communication to be
at the request of the destination rather than pre-emptively sent by the source. The removal

of unnecessary data transfers can allow a reduction in power consumption.
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Data co-dependent

The data dependent method of determining the required input set assumes the presence of
a necessary input set. In most computing stages each input can sometimes be unnecessary
and sometimes provide data to disqualify other inputs. The inputs to a stage which takes
two 1 bit inputs and passes them through an OR gate are co-dependent. This means that
(depending on the data) each input can obviate the necessity for the other (in cases where

the first input to arrive is a one).

4.1.2 Early output cases

The situation where a stage has received sufficient data to generate a result while some
inputs are still to arrive is called aarly outputcase [38]. Early output cases allow the
output generation in a circuit to synchronise only with the necessary subset of inputs and

not with the last input to arrive.

To demonstrate the approach, each of the three asynchronous circuit styles described in
the previous chapter (control circuits, bundled data and dual rail) will be adapted to

generate early outputs.

4.2 Control Circuits

As control circuits do not pass data, the generation of early outputs must be data
independent. Normally a token is passed on the output once all inputs in the latch’s input
set have all presented tokens to the stage. In the early output version, only a threshold of
inputs has to be present to output a token. In this function a rising transition of an input

cannot cause the output to fall, and a falling transition on the input cannot cause the output

to rise.

The threshold function gives the earliest possible time an output token can be generated
but does not guarantee that all inputs are ready to be acknowledged (or have the
acknowledge released). To ensure that all inputs are ready for a transition on the
acknowledge signal each latch outputs its validity. A validity transition signals the latch

Is ready to accept an acknowledge transition. To ensure the acknowledge does not reach

any input latches before they are ready to accept it, the validity signals of all inputs are
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gathered and combined with the acknowledge of the output latch. This ‘guarding logic’
replaces the strong indication that existed in the standard system. With guarding logic,
each latch is protected from receiving a transition on its acknowledge until it has signalled

it is ready to do so (by transitioning the valid signal).

The early output protocol can be seen in figure 4.1. When compared to the diagram of
“Early, Broad and Late Four-phase protocol” on page 23, the valid signal now does the
work of the request signal in the sequencing of the transitions. The request signal
transitions in parallel with the validity, it is guaranteed to be low once the validity is

released and high by the time validity is asserted.

v u .
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Figure 4.1: Early output protocol

4.2.1 Latches

The addition of the validity output in the latch design can be accomplished by connecting
it directly to the request out signal. In most designs, this is the most logical method of
generating the validity and the separation of these signals on the outside of the latch might
not seem justified. The separation becomes useful in designs where the latch can take
advantage of the different uses of the two signals, as demonstrated in “Anti-Tokens” on
page 63.

The second change to the standard latch designs is the sequencing of the ‘validity in’
signal with the acknowledge on the input. The acknowledge may only transition to match
the state of the validity in signal. This can be enforced by insertigpgeaiding C-element

[39]. This can be seen in figure 4.2 where the acknowledge signal, which leaves the latch
in the “Half latch design” on page 29, becomes synchronised with the validity in signal

(Vi) to generate a guarded acknowledge.
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Figure 4.2: Early output latch

4.2.2 Logic

The guarding C-element is the connection point between the validity gathering and the
acknowledge gathering C-element trees. These two trees are used to protect latches from
receiving transitions on the acknowledge signal until they are ready to do so, despite the

unbunding of the request and validity signals.

The acknowledge tree has existed in previous control circuit designs and the only
difference in early output systems is the separation of the validity and the request signals.
The validity signal now takes the place of the request signal by being gathered in a tree to
form a single signal at the output latch stating the validity of all inputs used to generate
the particular output. The request path now does not need to signify the state of all inputs
and can concentrate on the generation of the data (or in this case the time of the threshold
being met). This is done in a separate threshold function allowing the control circuit to
fire when a subset of inputs has arrived yet still wait for the remaining inputs to arrive

before acknowledging them.

4.2.3 Advanced Latch Designs

Half latches wait for the trailing edge of the request signal on the input side before
releasing the request out. This unnecessary wait can be avoided by releasing the request
out as soon as it is acknowledged by the output stage rather than also waiting for the input
to be release. The latch must still keep the acknowledge high until the request on its input

has finally dropped.
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This action introduces an additional trailing edge into a token and splits the token into two
as demonstrated in figure 4.3. The figure shows a token which stretches through the latch
(part 1 in the figure where both the input and output requests are high). The latch
(represented by the rectangle), once it has received an acknowledge from the stage it
feeds, can drop its request output early (before the input request has been released). The
front part of the token gets a trailing edge attached to it and the back part of the token gets
a front edge which is locked to the latch and will not progress (part 2). This will allow the
front token to progress with a new trailing edge, generating a smaller token which
occupies fewer stages. The back token’s trailing edge will eventually catch up to the latch

where the rising edge is held and disappear (part 4).

L —> 3. —> —>
2 — - 4 —> —>

Figure 4.3: Early-drop latch token split

Although the latch is capable of separating two data stages using a spacer because the two
stages hold the same token (stretched and split into two) it does not increase the level of

decoupling of the latch. The latch is still only capable of ever storing half a token.

Figure 4.4 shows the design of aarly-drop latch [39] which has the early drop
behaviour described above. The latch is based on the half latch design and keeps the C-

element along with the inversion.

An AND gate is added in the path from the original C-element to the Ro output. Normally
the gate’s output will reflect the data from the original C-element, but when the second
input of this gate has dropped, the output is forced low. This second input is driven by the
inverted Ao signal. This forces the output low as soon as the acknowledge arrives but the

validity signal remains high to stop additional transitions on the acknowledge signal. Only
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Figure 4.4: Early-drop latch design

once the request in the input side of the latch has been removed can the validity be

released.

The early output latch exploits the sequencing between the validity and the acknowledge

signals to release the request but not trigger another computation cycle.

4.3 Bundled Data

An early output version of bundled data systems can be implemented in the same way as
the control circuits. The generation of results can be controlled by both the arrival of
tokens and their data. Inputs can be data dependent, co-dependent or data independent,

giving the maximum flexibility.

4.3.1 Latches

Bundled data latches as in the control circuits are constructed by forking the request out

(Ro) wire to the valid out (Vo) output and inserting the guarding C-element.

4.3.2 Logic

The generation of an output can be dependent on the presence of an input or its data. These

condition signals are gathered to create a request signal.

A multiplexer example demonstrates both data dependent and co-dependent input sets.

The three inputs to the multiplexer in this example come from three different sources. A
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and B are data inputs, of which one will be passed to the output conditional on the value
of input S. One early output case is covered by the presence of input A and S (valids are
high) and the data of input S being zero. Another early output case is covered by the
presence of input B and S and the data of input S being one. These two cases also cover
the ‘all present’ case. The all present case is normally needed to generate an output once
all inputs have arrived. In this case the early output cases cover the all present case so there

is no need to add it to the request generating logic.

Figure 4.5 shows the early output generation and the validity gathering for the multiplexer
example. Normally, in the request generation logic, there would also be delay elements to
match the delay of the logic but in this case the delay of the logic is equal to the delay of

the early output request generation and no additional delay is necessary.
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Figure 4.5: Early output function of a multiplexer

The data part of the function must be combined with the request from the latch the data
came from with an AND gate. This ensures data inputs have no effect on the function until
they are stable. Attaching the data to additional gates before passing it through an AND
gate with its request signal causes races and extended wire forks. Such an arrangement is
smaller and easier to implement than forcing all data signals to pass through an AND gate
with their validity but additional timing assumptions must be upheld to ensure correct
operation. An example of this strategy can be seen in an early output case in the

multiplexer example which is not covered by the rules stated above.
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The two early output cases stated before cover most likely combinations to arise but a
third early output case is possible (which will be shown). The first two cases are data

dependent. This makes the S input necessary in all output conditions. The third case relies
only on the presence of input A and B and this causes the input combination to become

co-dependent (as each pair of inputs could remove the requirement for the last input).

When A and B are present and they are equal the S input is irrelevant to the result. The
result can then be generated without the need to wait for the S input. There are two
methods to construct an equality comparator for use by the request generator. The first is
to pass the inputs directly into a standard equality comparator (a row of XNOR gates each
taking a bit of the two inputs and an AND gate collecting all the XNOR outputs) and then
AND the generated equality signal with the validities of the two data inputs. This assumes
that by the time the request signal has gone up, the comparator has completed its operation
and presents the result for the current set of inputs. This is rarely the case and for this
method to work a delay element would have to be placed into the delay of the request
signal. The alternative to this approach is to pass all data inputs used in the early output
function through AND gates (with the validity signal of the input) before any logical

operations are conducted on them.

4.4 Dual-Rall

Implementation of the early output method is more suited to dual rail systems where the
validity of the result is intrinsically encoded in the data. The implementation of dual-rail
early output circuits can be achieved in a variety of delay models. The safest of these
models is QDI which offers safety matching that of DIMS along with forward propagation
speed of bundled data/synchronous designs (examined in sections 4.11 and 4.12). Less
robust methods useQI models which reduce the reset times, by not observing the
transitions of all wires in the system, and allow higher throughput. All methods described

use the same set of early output latches.

4.4.1 Latches

In the control circuit and bundled-data latch designs, the generation of the validity signal

was done by forking the request out wire. In dual-rail circuits the request is separated into
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arequest 0 and arequest 1. As no single signal exists, the validity signal must be generated
when one of the requests becomes active. This can be done by gathering then using an OR

gate.

Half Latch

In a half latch, the addition of an OR gate to generate the validity signal can be avoided
as this signal is already available. Originally generated to drive the ‘Acknowledge In’
output, the OR gate also generates the validity output. The reuse of this gate causes the

overhead of the early output version of the half latch to be a single (guarding) C-element.

Early-Drop Latch

The dual rail early-drop latch has no OR gate gathering the request outputs and so the

early output version must add that additional component.
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Figure 4.6: Dual rail early-drop latch

In the early-drop latch design, the OR gate gathering the requests before the resetting

AND gates is used to generate both the validity and the acknowledge signals.
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4.4.2 Logic

Early output dual rail logic has fewer restrictions than the DIMS approach. The output of
logic gates or units must remain in the null state until enough valid inputs have arrived to
determine the correct output. The units do not have to generate an output in every early
output case but must generate an output once all inputs have become valid. Once an output
becomes valid it may not change with the arrival of additional inputs. In the reset phase
the unit can drop its output once any of the inputs have been released and must drop its
output before, or shortly after, all the inputs have been released. Unlike the DIMS
approach, where the output is kept active until all inputs have been released, the early
output units have no such restriction. This makes the logic cheaper to construct, but the

stage completion must be ensured using a separate mechanism.

The structure of a two input early output OR gate is demonstrated in figure 4.7. The OR
gate generates an early output when either of two inputs are 1. To complete the set of input
states the AND gate generates an output when both inputs are valid but they are not

covered by the early output set (both are 0).
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Figure 4.7: Two input early output OR gate

This combination can be used to create any dual-rail early output AND/OR gate with or
without inversions on inputs and outputs. AND/OR gates output one value when all inputs

are in a particular state and output the other value in all other input combinations. Any
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inversions of inputs or outputs can be performed by swapping the wires representing 1 and
0.

With the arrival of the first input, the gate can either generate an output (if that input was
attached to the OR gate) or wait for more inputs to arrive as the output cannot be yet
determined with the present valid subset of inputs. This will continue until either the gate
receives an input connected to the OR gate or all inputs connected to the AND gate have
been activated. Once one of the inputs to the OR gate has been activated the AND gate
cannot gain the full set of inputs it requires to activate. In this example it is easy to see that
any complete input set will generate an output as either the input set matches the AND
gate set (and the AND gate generates the output) or some inputs differ and instead activate

one or more of the OR gate inputs.

The AND/OR gate has a full coverage of the early output states. It is not necessary to
generate an output in every early output case. Construction of more complex logic
composed with early output dual-rail AND/OR gates yields correctly behaving logic but
often does not have full early output coverage. Figure 4.8 shows a multiplexer constructed
with AND/OR gates and table 4.1 shows the behaviour of the unit. The unit generates
outputs in all but one of the early output states (marked red). Due to the composition by
parts (composing early output circuits from a set of early output gates) of the unit, the OR
gate can only generate an early output once it has received a one as an input from either
of the two dual rail AND gates. The OR gate receiving a zero from the AND gates could
mean “transmit a zero as it is being selected” or “this input is not being selected”. This is

why the A=1,B=1,S=X case results in an undetermined output.

This example demonstrates that composition by parts generates non optimal designs. This
can be corrected by implementing from the whole specification rather than dividing the
problem into parts. When designed using the full specification, the multiplexer covers all
early output cases with no overhead in area over the original design. The following

functions would be used:

X1 = (A1+S1).(B1+S0)
X0 = (A0+S1).(BO+S0)
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Figure 4.8: Composed early output multiplexer

B=X |B=X |B=X |B=0 B=0 B=0 B=1 B=1 B=1
A=X JA=0 JA=1 JA=X JA=0 |JA=1 = A=0 JA=1
S=X X X X X 0 X X X X
S=0 X 0 1 X 0 1 X 0 1
S=1 X X X 0 0 0 1 1 1

Table 4.1: Output generation of a 2:1 early output multiplexer

4.4.3 Loose Guarding

Early output circuits are designed to generate outputs before all inputs have been
presented. This property prevents the system from determining the state of inputs by
observing the output alone. Instead, early output circuits require a metlyuduafingto
ensure all inputs are ready to accept a transition of their acknowledge signalsosea
guardingsystem the input latches signal their ability to receive an acknowledge transition
by raising their validity output to state they are ready for the acknowledge to transition.
To ensure all inputs are ready for the transition to take place, all validity signals are
gathered using C-elements and finally combined with the output latch’s acknowledge in
a guarding C-element. The output of the guarding C-elementjissaded acknowledge

This acknowledge will transition only once all inputs are ready to receive it and the

acknowledge from the latch (taking the result of the stage) has signalled it has accepted
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the data. This enables any latch in the system to stall the following stage from entering
either the set or the reset phase (by not transitioning their validity signal). It also makes
the acknowledge from the output latch safe to be transmitted before all input latches are
ready to accept it as it will be stopped from progressing to the inputs by the guarding C-
element. This signal becomes latched in the guarding C-element which will keep it from
progressing until all latches have accepted the previous transition (signalled by

transitioning their validity signal).

Figure 4.9 shows the implementation of a gate with loose guarding. The Additional C-
element generates a validity signal for the output of the gate wire bundle by simply

gathering the acknowledge signals of the inputs to the gate.
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Figure 4.9: Standard early output gate with input guarding

This form of guarding is sufficient only for simple stages due to its timing assumptions
(explained in section 4.5). Hazards can arise due to the limited scope of observability of
the state of the circuit. Only the state of inputs and the output is observed (and not internal

wires) when declaring it safe to move to either the set or the reset phase.

Although early output logic has no storage, the signals travelling through it have delay.
Signals can propagate through many gates and once their source latch has released them
the propagation of the falling edge can take a longer period of time than the stage’s

transition back to the set phase. These dying signals can then interact with other signals
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in the new set phase in order to reach the output. The output in such a situation could be

incorrect as it is based on data from the previous cycle.

Signals abandoned by their input latch are often referred to as orphans. An example of an
orphan affected circuit is demonstrated in figure 4.10. The chained OR gate takes inputs
from a number of sources, generating one output. The arrival of the furthest input (A) after
the circuit has already completed will be met with an immediate acknowledge. This
causes a short pulse on the signal emerging from this latch. As the stage is resetting this
pulse can slowly travel along the chain of OR gates (coloured blue) eventually reaching

the output once the stage has moved back into the set phase.

Figure 4.10: Example orphan circuit

This problem can be tackled in two ways. The first is to generate a set of timing
modifications and force the circuit to only complete the reset phase after a period of time
during which all orphans would have been eliminated. This is not delay insensitive and
reduces the robustness of the circuit but as the occurrence of dangerous orphan
propagating structures like the one in figure 4.10 is rare (normally large OR gate trees
would be balanced), the methodology could have an impact on the performance of the
system. This is described in section “Early output timing assumptions” on page 60. The
second is to use a safer form of guarding to enforce a QDI level of robustness onto the

system. Two forms of safe guarding will be described.

4.4.4 Forward Safe Guarding

As the validity gathering C-elements only observe the state of the input latches, they
cannot ensure the internal state of the logic. This makes the circuits non QDI and
susceptible to hazards. A QDI guarding system such as forward safe guarding can remove

these hazards. Attaching an OR gate to the output of a dual-rail gate (as demonstrated in
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figure 4.11) generates a local valid signal based on the wire pair within the logic block.
This signal can be connected to the validity gathering C-element to ensure the validity of
both inputs and the validity of the output. As these gates are connected to other forward
safe gates the validity reflects the state of all stage inputs and data wire pairs feeding to
the gate (even through other gates). The gathered validity will reflect both the state of
inputs and the validity of all dual-rail wire pairs in the entire logic block. The
acknowledge cannot transition until all inputs and signal pairs in the block of logic have
become valid or returned to zero. This can ensure no orphan signals are present in the
logic before moving onto the next computation cycle. This type of guarding is also

implemented in the NCL-X design style [32].

Al
AQ \
.y w— X1
R X0 >
x>

0 i >
Vi >

C

Figure 4.11: Forwards safe early output gate

The forward propagation of the computing signals remains unhindered by the additional
guarding logic and the stage delay should be similar to that of the simple guarding version
(assuming additional capacitance of wires due to fan out to the validity testing OR gates
have little impact). Although the result can propagate to the next stage, the gathering of
all inputs and the restriction that all paths must be activated before the acknowledge is
permitted to propagate can have a negative effect on the speed of the reset cycle. The need
for all wires in the design to be checked along with all inputs (as opposed to just the inputs

in the loose guarding system) creates a large gathering C-element which would have to be

constructed from a tree of smaller C-elements.
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The effect of this gathering style is to force the unnecessary late inputs to arrive and set
the parts of the logic they control. After this is done, the reset of the stage also checks all
wires in the logic block before releasing the acknowledge. The check has to be conducted
on both the rising and falling transitions of all wire pairs, as the only way to ensure the

sub circuit has completed and gone through the cycle is to observe all wire pairs rising and

then falling.

This approach creates a fast propagating result (low latency maintained) but a slowly

propagating dropping edge (reduced throughput).

4.4.5 Backwards safe guarding

Thebackwards safe guardingnodel checks the data wire pairs for the presence of data
on the propagation of the acknowledgement signal rather than the validity. This allows

parts of the logic and some inputs to reset before the arrival of all inputs.

In backward guarding, validity is generated by taking an OR of the two data wires. This
then only signals the local validity of that wire pair and so does not imply that it is safe to
pass the acknowledge to all the inputs of the gate (as some may have not arrived). To
protect the inputs of the gate from receiving acknowledge signals before they have
asserted their validity, a C-element is placed to propagate the acknowledge only if both
inputs have become valid. This is arrangement is demonstrated in figure 4.12. The
construction is similar to the “Reverse Path Completion” created by Luis Plana used in

the Balsa system (unpublished).

Unlike the forward guarding system, backward guarding examines the state of the circuit
on the acknowledge propagation. This can make it slower than the forward guarding
system as backward guarding, instead of testing the circuit for validity of internal dual-
rail wire pairs in parallel with it computing, waits until the circuit enters the reset phase
before doing so. The advantage of backward guarding is its ability to acknowledge a
subset of inputs, in early output cases, while waiting for the complete set to arrive. This

property is exploited in section “Backward safe guarding” on page 64.
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Figure 4.12: Backwards safe early output gate
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Backward safe guarding also creates circuits with low latency but a reset phase even
slower than that of the forward safe guarding system (lower throughput). The two safe
guarding approaches generate QDI circuits which are very robust but at a cost of reduced
throughput. Additionally, a safe guarded system cannot take advantage of the anti token
latch described in the next chapter (although the backward safe guarding system can make
limited use of them). For these reasons it would also be advantageous to determine the
timing assumptions to avoid using a safe guarding system. In most circuit stages the loose
guarding system is sufficient and it would be advantageous to determine if the circuit has

possible hazards before adding additional guarding logic to remove them.

4.5 Early output timing assumptions

As stated in section 1.6, timing validation is outside the scope of this thesis, but the timing
assumptions made and how they have been upheld in experiments conducted in later
chapters will be presented. The timing assumptions in loose guarding early output
systems are based on the removal of orphans. The safe guarding strategies achieve this by
observing every intermediate signal in the system to ensure all were valid (or returned to

zero) before allowing the next transition on data signals.
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The example presented in section “Loose Guarding” on page 55 will only cause a hazard
if a timing constraint is broken. There is a race between the data signals progressing
through the logic gates and the validity signal travelling to the output through a series of
C-elements which then switches the guarding C-element within the output latch. This
enables the acknowledge to be asserted which releases the data signals of some input
latches which then releases the data to the output. In figure 4.13, the two paths are shown
in red and blue. If the blue path takes longer than the red path, the blue signal would reach
the final OR gate after the red signal on the other input would have already been released.
This would be seen to the output latch as two distinct tokens. This can cause an extra token
to be inserted into the pipeline which can either deadlock the system or unsynchronise a
pipeline causing it to function incorrectly throughout the remainder of the execution. The
alternative is that the two results of the stage were merged and either matching and leaving

the error unseen or causing both bits in the result to be one (a disallowed state).

Figure 4.13: Orphan race

In the figure, the paths have visibly different lengths and it would be very difficult for the
post layout routing to make the delay of the blue path longer than that of the red path if
the gates were formed from cells which forced the C-elements to be placed directly next
to the logic gates. This does also assume the C-element validation network does not
become optimised into a shorter path (e.g. by forming a balanced tree). All early output
circuits can be assumed to be safe if they uphold the condition that the propagation delay
through each gate’s validation gathering C-element is slower than the data propagation.
These timing constraints can be extracted and used to guide the layout software to ensure

these conditions are met.
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If it is difficult to adhere to these constraints in some gates, those gates can be re-
implemented using one of the safe guarding methods or additional delays could be placed

on the generation of the valid signal from some gates.
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Guarding logic provides a method of ensuring an input is present before acknowledging
it. Until a late arriving input arrives, the stage (or at least part of the stage as will be shown

in section “Backward safe guarding” on page 64) is unable to complete the
acknowledgement. This not only stops the stage progressing to the next set of inputs but
also requires it to continue computing a data input already determined to be unnecessary.
The first challenge, of releasing the stage to move to the next set of inputs, can be
accomplished by keeping a flag inside the latch representing an instruction to
acknowledge the next token and to not propagate it to the next stage. This would allow
the stage to continue processing, safe in the knowledge that the late and unnecessary token

will be destroyed and instead only the following token will be presented to the stage.

The flag kept in the latch to destroy one token can be thought of as an “anti-token”. Anti-
tokens in collisions with tokens destroy both the token and themselves. This is done by
adding a not moving front edge to the arriving token. This, as demonstrated in section

“Advanced Latch Designs” on page 47, causes the token to be removed.

Although a latch could be designed to hold a number of anti-tokens, the increase in logic
area and propagation delay through the latch is undesirable. Instead of latches gathering
anti-tokens and waiting for inputs to arrive to be destroyed, the latch should be able to
forward the anti-token to the stage computing the unnecessary input. This both solves the
problem of unnecessarily computing the input and removes the need for the latch to store

a number of anti-tokens.
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5.1 Anti-token theory

In order to understand how an anti-token processing system can be built, a few
implementation styles should be examined to determine the desired behaviour and

possible implementations.

5.1.1 Backward safe guarding

Backward safe guarding, as described in section 4.4.5, allows a subset of inputs to move
back into the set phase once all dual-rail wire pairs they effect have become valid and
returned back to the null state [38] (an example of this will be shown). This is because the
completion of the stage is not determined on the propagation of the validity signals but
rather on the propagation of the acknowledge. This often allows the acknowledge to reach
some inputs of the stage which have become valid. The other input subset with members
which have not become valid, is halted until all inputs are presented and subsequently
reset. This action can be repeated allowing the result of the stage to become several stages
ahead of some inputs. Unfortunately, in each cycle the halted set of inputs grows
eventually absorbing the whole stage. This partial completion behaviour has the effect of
collecting anti-tokens to absorb the unnecessary inputs. Although the anti-tokens are
unable to progress through the input latch onto the next stage backwards, careful

designing can enable many anti-tokens to be collected in a single stage.

Anti-token generation and stacking can be demonstrated in an example circuit shown in
figure 5.1 (note this is a different circuit from those shown in chapter 4). The circuit has
been abstracted to show only the request and the acknowledge wires. The values arriving
on all inputs (latches A to F) in the example are always 1. In the initial state, shown in the
figure, the circuit is provided with inputs B to F. Input A is not provided. This is enough

to generate a result and the output (latch Z) receives a request. This output generates an

acknowledge despite the absence of the complete set of inputs to the stage.

Despite the acknowledge from the output latch, the late and unnecessary input cannot be
acknowledged until its token has arrived. This stops the progress of the acknowledge
signal from reaching the input and any inputs which are combined (directly or indirectly)

with the path of inactivity due to the non-presence of the input. In this case, the path of
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Figure 5.1: Backward guarded stage with full input set

inactivity only reaches one gate and the only other input connected to that gate is input B

(as shown in figure 5.2). The acknowledge signal can reach all other inputs in the stage.

Figure 5.2: Stage after acknowledge

The release of all other inputs in this case also drops the output and the acknowledge
signal is released by the output latch. This causes the acknowledged region to be
shortened down to the single gate which is waiting for one of its inputs to be released

(signalling the acknowledge is being propagated), and one gate which is not releasing its
output signal due to it not being able to propagate the acknowledge signal (as shown in
figure 5.3). Although input C becomes reset it cannot become valid again as a gate it feeds
is propagating the acknowledge and it will not stop acknowledging until all its inputs

release their requests.
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D

Figure 5.3: Stage after removal of acknowledged inputs
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All other inputs can now become valid. Again, if the set of inputs is sufficient to generate
a result this stage can complete and generate another acknowledge cycle. Each
acknowledge region (acknowledge high between the AND and the OR gates) is
effectively an anti-token. Figure 5.4 shows the maximum anti-token capacity of the stage.
It can store two anti-tokens while still being able to generate a result which allows the
output latch to acknowledge, although the acknowledge cannot reach any inputs. This

effectively gives the stage a maximum anti-token capacity of two and a half.

Figure 5.4: Stage with maximum anti-token capacity

Each anti-token waits for the presence of valid data on all its inputs before acknowledging
them and does not release the acknowledge signal until all inputs have returned to null
(signalling they have accepted the acknowledge). This allows the anti-tokens to stack up

and not merge into a single anti-token.

The maximum anti-token capacity of a stage can be determined through the difference in
the number of inversions in the late arriving token path and the input subset still capable
of generating an output assuming the circuit uses only one kind of gate (either AND or
OR where the other gate can be created through applying DeMorgan’s theorem on the
available gate). Each inversion can store half an anti-token. In the given circuit this would
yield a difference of 4 inversions. An additional half anti-token can be stored in the output

latch so the total number of half anti-tokens which could be stored in the stage is 5.

Unfortunately, stages are rarely able to keep more than one anti-token and more often they
can only separate inputs from their output by half a cycle. This also does not resolve the
problem of stopping the computation from being carried out by propagating the anti-token
through a latch. Additionally, the computation of the stage’s completion being done only
after the stage has generated a result, yields lower performance, as will be shown in the

next chapter.
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5.1.2 Counterflow pipeline processor

Interaction between moving tokens is usually done at specific points where they become
synchronised (should either token arrive before the other it will then wait for the other
before the action takes place). Interaction between tokens in a system where the
interaction point is not specified becomes more problematic. This is what anti-tokens
attempt to achieve by allowing the token to progress though the latch to the previous
stage. By specifying the point of interaction the backwards safe guarding anti-token
system can avoid the use of arbitrating components (the input latch of the stage is always
the interaction point in this case), which are necessary if a synchronisation point is not
specified. Unfortunately, one of the advantages of anti-tokens is that each token tries to

progress to the other thus halving the amount of time they take to reach each other.

The counterflow pipeline [41] is an example of a system where tokens moving in opposite
directions interact. Composed of two pipelines, instructions flowing in one direction and
the results and register contents travelling in the opposite direction (opposite direction to
the instructions) interact. Interactions can destroy or change data carried by tokens
flowing in the opposite direction. The result tokens take the latest value of the register
taken from the instruction token. The instruction tokens can also read or update the values
of registers they are operating on. Often there are also ways of deleting tokens in
situations such as taken-branch instructions; this removes the speculatively, but

unnecessarily, fetched instructions.

There are a number of implementations, both synchronous and asynchronous, of
counterflow pipelines. The “asynchronous counterflow pipeline processor” is the most
relevant. The system allows tokens to travel in both directions unhindered until they try
to progress to a stage occupied by another token flowing in the opposite direction. The
dangerous action of both tokens moving to their next stage and bypassing one another is
protected against by eop element. The cop element takes the requests, from the two
pipelines, for transition of a token to the next stage and only permits one of them. The
other token’s movement is halted until the stage has signalled it has finished operating on
it. This ensures that both tokens are present in a processing stage and only that stage is

able to process the interaction between the two tokens.

Chapter 5: Anti-Tokens 67



5.1 Anti-token theory

The cop element uses a mutex element (described in section 2.3.2) to ensure only one of
the transactions is granted. Unfortunately, the use of arbiters can have a negative effect on
the performance of very finely pipelined systems with a lot of collisions. With the heavy
use of arbiters with their non-deterministic delay, the design style has an unpredictable
computation time leaving it unmarketable for real time and quality of service applications.
Although this design style could be adapted to carry tokens and anti-tokens in the two
pipelines, the overhead in delay of the sequencing arbiters into every latch transaction
could remove any benefits gained by removing unnecessary speculative operations.
Additionally the technique is unnecessarily complex simply to remove colliding tokens,

as it is also designed to perform arbitrary computation on the collision.

As no computation is needed to remove tokens and anti-tokens upon their collision there
IS no necessity to ensure they meet in a single stage. Counterflow pipelines use two
separate pipelines to allow tokens to pass (after interaction) and for both to carry data. As
both tokens are always removed and data is carried only in one direction, there is no need

to have separate pipelines.

5.1.3 Counterflow networks

Counterflow networks [42] are neural network type organisations communicating using

asynchronous protocols. Neural networks comprise a mass of neurons, each “fires” upon
reaching a threshold of neighbours already fired. The threshold is determined by summing
weighted inputs and comparing to an output threshold and once a neuron fires it causes

more of its neighbours to fire. Connections between the neurons are bi-directional.

The two elements used to compose counterflow networks are the node and the link. Each
node is connected to other nodes using links. Links do not have a direction and

communicate the state of both nodes, synchronising them to ensure each node has
acknowledged the transition of the other. Nodes collect the states of their neighbours and

once having reached their threshold they fire.

Both the node and the link are symmetrical and use a three wire interface. Figure 5.5
shows the construction of both the links and nodes and demonstrates the how they are

connected. The three wires labelled L, R and N are used for communication. The L wire
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(Link Request) signifies a link passing the request from one node to its neighbour
(through the link). This request is passed to the link over the N wire (Node request). Wire
R (Ready) is used to enable flow control between the two nodes. The link uses this wire

to stop the two nodes it is attached to from firing or returning to their non excited state.

® ® <N >

Figure 5.5: Circuit of two counterflow nodes connected by a link

Each node collects the Latch request signals in the threshold unit. The output of this unit
Is then gathered with all Ready signals in a C-element. The C-element output becoming
active represents the Node firing. This signal is then passed back to all links to forward to
other nodes. Links which connect two Nodes which have fired then release their Ready
signal. This also drops the Link request signals passed to both nodes. The link will wait
until both nodes have returned to their inactive state before re-activating the Ready signal

which in turn allows requests to propagate through the link.

This sequencing forces each node to wait for all its neighbours to fire before releasing its
request and ensures all links are “ready” before firing. Not only does this ensure the

message is propagated and not lost but it also separates waves of activation.
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In a simple example a string of nodes and links is made in a FIFO like arrangement (like
the one shown in figure 5.5), the threshold of each node is set to one, meaning a node will
fire if either of its neighbours has. A wave of activity can be caused by either end’s token
firing. All nodes will then fire in order progressing the activity towards the other end.
Each node, once it has fired (and so have its neighbours), can return to its un-excited state.
This is not necessarily on the trailing edge of the activated region. A new pair of trailing
edges can be created by any node. This splits the excited area into two parts creating a new
trailing edge for the firing front and a trailing edge for the decreasing back part of the
activated region. This behaviour is similar to that of the early-drop latch described in

“Advanced Latch Designs” on page 47.

Each node fires and waits for all of its neighbours to fire before dropping to its inactive
state. Only then can a node fire again, once all neighbouring nodes are ready to receive a
new request (signalled through the Ready lines). The enforcement of at least one node
separating regions of activity ensures the trailing edge of an activated area is not
accidentally connected to the rising edge of another activated region. Again this is another

behavioural trait in common with the token based asynchronous system.

The most important behavioural aspect of the couterflow network system is the merging
of activation regions progressing in opposite directions. Unlike the trailing edge, there is
no protection for the front edge from merging with another activation area. This means
that two areas moving in opposite directions will merge. Any areas with no leading edges

will be removed by the trailing edged deactivating the remaining excited nodes.

A token collision happening in a FIFO example is demonstrated in figure 5.6. Two
activation regions are generated in nodes at opposite ends of the FIFO (point 1). These are
progressing in opposite directions towards each other. By point 3 on the diagram the
trailing edges start releasing some nodes at the back of the regions. Because the regions
are flowing in opposite directions, at point 4 they merge their leading edges leaving only
trailing edges on the activation area. These then release the remaining activated nodes and

by point 6 remove the whole region.

This merging and destruction of two regions moving in opposite directions can be used to

implement anti-tokens. To remove and stop a region from progressing, another activation
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Figure 5.6: Activation area merging in a counterflow FIFO

area can be introduced travelling in the opposite direction towards the undesired region.
The introduction of these counterflowing areas occurs in counterflow networks when a
number of neighbours to a node have not fired at the time the node fired. The newly fired
node then passes its request to the remaining unexcited neighbours in an attempt to cause
them to fire. This removes the slowly progressing activation areas which should have
reached the firing node through the node’s still inactive neighbours. This is very similar

to the desired behaviour of the anti-token circuits.

5.2 Control Circuits

Three methods of generating anti-tokens have been proposed. The backward safe
guarding anti-tokens are implicit in the design and need no additional effort to be
implemented. Unfortunately this method does not allow tokens to progress backwards
through latches. The counterflow pipeline does allow the progress of anti-tokens through
latches but requires a large amount of additional logic. An anti-token pipeline along with
‘cop’ units would be required alongside each forward pipeline, consuming both power
and area. The additional logic will probably have such a negative effect on speed it would
be difficult to find cases where anti-tokens can have a greater beneficial effect to counter

the overheads.
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The most promising approach is the counterflow network system which uses a single
pipeline to communicate in both directions. Additionally, many similarities can be drawn
between it and the early output system making it easily adaptable to them. Both systems
break into two parts: the communicating components connecting two units together and
the computational components taking inputs form one set of connections and generating
outputs on other connections. The only difference is that the control circuits have a
nominal direction of data flow. Data flow direction is partly enforced by the sequencing

of the delay insensitive protocol underlying the model. Although the sequencing of each
early output style transaction requires the data to be present before the validity rises (to
ensure the acknowledge cycle begins only once the input has presented data to be
acknowledged), this condition can be removed if the latch can remember to remove the
token at a later time. In such cases, the token may not need to be present in order to
complete the stage’s computation. The acknowledge will reach inputs which have not
presented data to the stage if the latches which they pass through present the validity early.
Presenting the validity early allows the acknowledge to propagate to the late arriving
token. This would only be done if the latch is both capable of propagating the
acknowledge to the next stage and it is not currently doing so. Each latch reserves the
ability to not raise the validity line if it is not ready to accept an early acknowledge. This
can mean the latch is not ready to receive an acknowledge at that point in time or the latch

Is incapable of doing so (not an anti-token latch).

5.2.1 Latch

The anti-token latch can be implemented by altering the counterflow network node and
link designs. Taking the node and link design and directly mapping it into the control
circuit’s latch template yields the implementation shown in figure 5.7. In order to map the
design to the control circuit specification, the node firing function is mapped to the early
output function and an OR gate combines it with what would have been the link request
signal in the counterflow network design. The ready gathering C-element from the
counterflow network design is mapped to the guarding C-element and the validity

gathering tree.

The request in line (Ri) is combined with the acknowledge out (Ao) signal (after being

passed through an AND gate to ensure it is only active when the latch is ‘ready’) in an OR
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Figure 5.7: Control circuit adapted anti-token latch

gate to allow either of these inputs going high to trigger a completion of the cycle. This
means once the result has been generated or the activation of acknowledge out (Ao) has
signalled a receipt of an anti-token, the latch can complete. This triggers an acknowledge
on the input side. On the output, if a token was being passed, the Request would be
activated and the latch will wait for an acknowledge. On passing an anti-token the
acknowledge has already been received and so the stage can fully complete by releasing

the validity out (Vo) signal.

Early output re-insertion

In counterflow networks, the nodes will only complete once all links are ready. There is
no special output link which can fire once the threshold has been reached and before all
inputs are ready. Because, in computing systems there is a nominal direction of data flow,
the circuits do not have a symmetrical behaviour across the input and output nodes. In
early output systems it is possible to take advantage of the threshold being reached before
all inputs have raised their validity. The result is propagated to the next stage and the
gathering of validity signals ensures that, only once all inputs are present, does the

acknowledge become asserted.
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To regain the early output property, the Ro signal must also be activated when the Ri
signal has been triggered. To achieve this the Ri signal must be able to trigger the
activation of Ro. This can be done by merging the Ri and Ai signals in an OR gate as
demonstrated in figure 5.8. This causes the Ro signal to become active when the Ri signal

arrives, and stays active until the acknowledge Ao has arrived.

RI__,
R

Figure 5.8: Early output control circuit anti-token latch

5.2.2 Logic

The logic in anti-token based systems is the same as that in the early output logic. The
assertion of validity before the request has been generated is not within the early output
protocol. The method of circuit generation does not need to change but in order for the
system to allow anti-token latches to communicate with standard half and early drop
latches, additional timing assumptions must be upheld. These are described in section 5.5.
This allows the use of anti-token latches only in places where they are beneficial while in
other places half and early drop latches are appropriate. The benefits of anti-token latches

become greater when used in data processing systems such as bundled data and dual rail.
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5.3 Bundled data

The implementation given above can be used for bundled data systems. The latch can be
used in place of a half latch and connected to any early output stages (as long as the timing
assumptions described at the end of this chapter are upheld). The latching signal can be
taken from a number of points in the design to generate the correct latching for a four

phase early handshake. The “acknowledge in” signal is easiest to sample as other signals

can often be optimised away to form complex gates.

5.4 Dual Rall

In the past two chapters, the dual rail versions of the latch could be generated by
duplicating the request data path. Unfortunately, in this design, this would require the

duplication of most of the gates and the addition of several OR gates to detect completion
of different wire pairs. Instead, a redesign of the request passing system allows a smaller

design. The new design is shown in figure 5.9.
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Figure 5.9: Dual-Rail anti-token latch design

The data is stored in asymmetric C-elements (see “C-elements” on page 25). These

release their data as soon as the acknowledge on the output arrives. This gives the anti-
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token latch an early drop property. This comes at a higher expense than the early drop
latch (described in section 4.2.3) but it does have a different timing response to stimuli.
The acknowledge out rise to request out fall time is two gate delays compared with the

early drop and half latches which take just one.

5.5 Anti-Token protocol

Anti-token latches do not adhere to the early output protocol which assumes sequencing
of the transitions on the request and validity signals. Figure 5.10 shows the early output
protocol and figure 5.11 shows the STG of the sequencing. The transitions marked in red
on the figures are the Req to Val transitions. This sequencing is upheld by early output
half and early drop latches and by ‘safe guarded’ gates (both forward and backward). It is
even upheld across loose guarding logic if the delay of the validity gathering C-elements

can be assured to be greater than the delay of the logic gates.

| /““w/ | /“%—\

Figure 5.10: Early output protocol with safe sequencing
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Figure 5.11: Early output protocol STG

Because anti-token latches rely on being able to assert their validity before asserting the

data request, this request validity sequencing assumption cannot be upheld. Additionally,
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the use of loose guarding allows the request signals to become asserted and reasserted
during the reset phase (as just-arriving signals ripple through the stage and arrive as pulses
on the output). Finally, the request signals need not rise within a cycle due to an anti-token
pass. The sequencing in figure 5.12 shows the updated anti-token allowing based early

output protocol and figure 5.13 shows its STG.
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Figure 5.12: Anti-token protocol

Figure 5.13: Anti-token protocol STG

5.5.1 Timing assumptions

Stages with anti-token latches on their inputs are susceptible to generating several request
pulses on the output of the stage during the acknowledgement. Latches should only accept
the first request, and while the stage is acknowledging, the latches should ignore any
transitions on the request wires. To stop the data C-elements in the half and early drop
designs from receiving additional tokens during the acknowledge, the acknowledge in
signal could be inverted and connected to each of the data latching C-elements. This stops

the C-elements from capturing new data while the previous stage is in the reset state
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(while Ai is high). Anti-token latches are already protected from accepting tokens during

the reset phase.

This is a simple strategy to stop all orphan glitches from reaching the next stage. It was
tested and shown to work in a circuit specifically designed to cause such a situation. These
cases very rarely occur as circuits which generate such behaviour are composed of long
strings of OR gates along which the orphan can travel, a specific sequencing of arrival and
data would also be required. In the next chapter, a number of circuits will be presented,
including one which has a long line of OR gates which is a very susceptible to failures to
meet these constraints. During the testing and benchmarking of these circuits, the
situation of an orphan managing to propagate to the output of a stage never occurred
throughout the thousands of simulations conducted on these circuits. This was partly
because most of the stages were very small and balanced (roughly logic equal distance for

all inputs).

These timing assumptions, and methods of protecting latches against orphans, are
presented to demonstrate that the timing hazard problem may be solved without paying a
high penalty in performance. A number of assumptions, such as the comparative delay of
a C-element versus a gate, were made, but as these are outside of the scope of this
investigation, they will not be justified. Only a simple model of orphan generation and
propagation was presented and further work in the area should reveal better approaches

to achieve a highly robust system still capable of working with anti-tokens.

5.5.2 OR-causality

The functionality of the anti-token latch is based on OR-causality [33][36][37]. OR-

causality is a method of triggering a transition once one of a number of input events
happens, in contrast with AND-causality which requires all input events to happen before
the transition is triggered. In the case of the anti-token latch either the request in (Ri) or

acknowledge out (Ao) transitioning up causes a sequence of transitions.

This kind of behaviour is difficult to describe in DI STGs as either (or both) of the inputs
can cause the output transition and each input transition should be acknowledged. An

example of a method of guaranteeing all inputs are acknowledged is shown in figure 5.14.
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Either of the two inputs (A and B) transitioning up can cause X to transition but both
inputs are necessary to arrive before (observed through signal Y) the cycle can complete
and they are acknowledged. This forces a sequencing on the inputs to the unit and both A
and B have to cycle even when only one causes the transition of X. In the figure, although
X does not cause Y to transition, the implementation of the circuit ensures that the
transition on X will happen before the transition on Y. For this reason the transitions are
connected through Read Arcs (dashed lines), which signify the transition is guaranteed to

happen before, although it does not directly cause, the other signal transition.

m >

Figure 5.14: OR-causality example circuit and STG

The design of the anti-token latch presents an additional problem where only one of the
two signals (Ao) is guaranteed to be cycled each transaction. The Ri sighal may never
arrive. In the previous example the Y- transition was used to guarantee both signals had
completed their cycle before starting a new one. In that example, both signals were
guaranteed to rise and fall during each cycle with Y synchronising them. In the anti-token
latch the high periods of the two inputs entering the OR-causality segment are confined
to periods between sensed transitions. In the case of the Ao signal the high period is
guaranteed to be present each cycle and so can be observed by directly sensing the Ao
signal, in a similar way to the example design. In this case the Vo transitions synchronise

with the Ao signal much in the same way that Y was used in the example circuit. The RIi
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high period is not guaranteed to be present during each cycle and another method of
ensuring the signal does not become high some time later during the cycle must be
present. Although the Ro signal high period is not guaranteed to be present each cycle
(and thus the circuit cannot observe it transitioning up and then down to guarantee it has
completed) the high period of Ro must be confined between Ai- and Vi-, as one of the
rules of the anti-token protocol state that each cycle the Vo- transition must happen after
any Ri transitions. Figure 5.15 presents the STG of the behaviour of the anti-token latch
presented in figure 5.8 on page 74. The OR-causality part of the figure is highlighted in
green to match the highlighted OR-causality in figure 5.14.

Vi+
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A

Figure 5.15: Anti-Token latch STG

In addition to dealing with the OR causality between the Ao and Ri signals, the latch must
also generate the Ro signals which could be acknowledged before or after it is generated.
In the STG the Ro signal is withdrawn only if it was raised during that cycle. This
decision, along with the OR-causality, could be resolved using a mutex element but a
mutex free implementation is preferable as a mutex element can consume an

unpredictable amount of time to resolve. Although the probability of a long metatstable
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period within the mutex is very low, the use of a mutex in a frequently used component,

such as this, increases the probability to a level where it could become problematic.
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To understand fully the behaviour of circuits made with the techniques described in the
previous chapters, properties of circuits affected by this change in the design style must
be identified. These properties can then be analysed in circuits to become performance

metrics.

This chapter will concentrate on two areas of the early output designs. The occurrence of
early outputs will be studied and then methods of improving this metric will presented.

The second area focused on will be the performance of complete early output circuits.
After analysing the performance of circuits, a series of optimisations will be presented and

their effects on the performance will be demonstrated.

6.1 Early output occurrence

The ability of circuits to generate early outputs must be measured to justify the claim they
increase performance. Different computations have different early output properties. To
demonstrate these properties, 12 common circuits were observed with varying numbers
of valid inputs present. For each circuit the full input state space was explored and for each
input combination, the ability of the circuit to generate a result was recorded. As some
circuits tested have over 100 million input combinations a program was written to
simulate the circuit in each case and then optimised to allow reasonable computation

times. Its operation will be explained in more detail in section 6.1.2.

6.1.1 Benchmarks

The circuits chosen were taken from a synchronous design [43]. These were not altered
or optimised to allow the tests to observe the true performance of circuits created by

synchronous engineers and then passed through the program the function of which will be
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clarified in the next section. Each benchmark circuit will be described and its function

presented.

7seg

The 7seg benchmark is the generator for segment A (top segmemt)affd segment
display decoder. The input is 4-bit binary coded decimal and the output is the state of the
top segment of that digit. High output of the segment is distributed randomly across the
input state space. As the binary number being presented to the unit is limited to the range
of zero to nine, the extra input states can be ignored on the logic generation. This can
allow the generation of smaller implicants (larger implicant loops on a Karnaugh map)

and thus increase the likelihood of early outputs.

ALU

A one bit slice of an ALU from the reference design. This takes a three bit code defining
the operation on the two, 1 bit values along with a carry in. The three bit code only
represents 6 operations and so there is some redundancy in the code as well as the carry
in only being necessary for addition and subtraction operations. The other (logical)
operations are AND, OR, NOR and XOR.

AND

Early output states are generated most frequently in very large AND/OR gates. This
benchmark uses an eight input AND gate to show an ideal circuit where the probability of

early outputs is very high even with a very low number of inputs.

Adder

Although it is impossible to generate a full result of an addition without the presence of
all inputs, it is possible to generate parts of the result with only a subset of inputs. This

benchmark measures the ability of bit eight of the adder to generate a valid result. The
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inputs higher than bit eight in the adder have no effect on the result of bit eight and are

thus ignored.

Branch

The logic to determine if a branch should be taken in the original design took the relevant
bits from a fetched instruction, the result of the comparators and the flags from the four
co-processors. This totals nine inputs of which many can take considerable time to be
computed. The branch unit in a processor is often the bottleneck and it is important to be
able to determine which instruction to fetch as soon as possible and preferably without

waiting for results of unnecessary computations to be performed.

CmpEQ

The branch unit takes two inputs from comparators to determine if a branch is required.

One of these comparators is a “compare if equal”. This takes two parameters (in this case
both 8 bits long) and generates a signal representing their equality. The construction is
made of a layer of XOR gates comparing each bit pair and a NOR gate gathering all pairs

to generate a single bit result.

MUX

Multiplexers are a very common component and here an eight-to-one multiplexer is used
to demonstrate early output instances in such components. One of the eight inputs is

chosen to be passed to the output depending on a three bit select input.

Memory

Memory mask logic controls the mask in the data memory load unit which zeros parts of
the loaded word. This is used in byte and half word loads as well as rotated partial loads

which have addresses on non-word boundaries. Unlike most of the other benchmarks the
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logic in this benchmark is relatively deep as many parts of the circuit are also used to

generate other outputs.

Random

In order to prove that even circuits with random mapping of output states to the input set
have early output cases, a circuit with a randomly chosen output for each input
combination was created. Each eight bit input vector corresponds to an output of either
zero or one. This effectively generates a 256 bit ROM containing random data. The circuit
is constructed as a two level AND-OR structure containing an eight input AND gate for
each of the 130 (of the 256) different randomly selected input states to represent a positive
output. The results of these AND gates is then passed to a 130 input OR gate. This is not
possible on modern design methodologies and both the AND and OR gates would need

to be formed from trees. In this benchmark no effort was made to optimise the design.

RandomMin

Synchronous designs often try to decrease the amount of logic used by optimising the
designs with tools such as Espresso [44][45]. Espresso takes a circuit specification in the
form of a table with the input states and the desired output states and generates another
minimised table again with the input and output states but also (if an optimisation was
possible) with input states holding a larger number of “Don’t care” inputs and a decreased
number of terms. This allows synchronous designs to reduce the size and number of
implicants and thus the number and size of gates necessary. In an early output system this

also can have a positive effect on early output generation.

The previous benchmark (“Random”) was passed through Espresso and the resultant two
level AND-OR circuit was benchmarks. The number of minterms had dropped from 130

down to 41 with an average of six inputs to each minterm.
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Shifter

The shifter does a very similar job to a multiplexer. In this case only one of the output bits
(bit four) of the eight bit shifter is observed. As well as the three bit shift offset and the 8
bit original value there is a direction (left or right) and an arithmetic bit to trigger sign
extension on right shifts. In the case of a right shift in arithmetic mode if the top bit of the
input number was one, a one is used when the value is shifted beyond the extent of the

input number (rather than the normal zero).

XOR

The final benchmark is the worst case circuit that can be implemented in this design style
in terms of its ability to generate early outputs. The XOR gate is the only gate which

cannot generate early outputs and is placed here as a control.

6.1.2 Composed Circuits

The circuits were passed into the ‘Early’ [46] program to be evaluated. Early tests the
circuit’s ability to generate a result under different input states. Each input can be in one
of three states (Zero, One and Null). The entire input state spac%v'mhére C is the
number of inputs. This means that circuits with more than 20 inputs become very difficult
to explore fully as the number of input combinations exceeds? combinations. For

this reason all benchmark circuits were limited to 17 or fewer inputs. If data on larger
circuits was desired then other approaches such as Monte-Carlo or implicant analysis
could be used, but both have weaknesses. The Monte-Carlo method takes random input
states and only measures a subset of the full space and thus gives inaccurate results. An
implicant analysis method has also been researched. Instead of measuring the circuit’s
performance for the complete input set the early output coverage of each implicant can be
derived and summed (subtracting the cross section of the implicant with the summed
total). Thisis a fast approach but in XOR based circuits the number of implicants becomes
so great the approach becomes considerably slower than the full input space evaluation.
The approach could be improved but as all circuits had fewer than 20 inputs the

exhaustive approach was sufficient.
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After the circuit’s ability to generate a result is recorded across the complete input state
range, the proportion of input states for a valid result with a varying number of inputs
present can be recorded and presented on a graph. Figure 6.1 shows the percentage of
input combinations giving a valid result on the Y-axis and the percentage of inputs present

on the X-axis.
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Figure 6.1: Early outputs in composed circuits

Each of the benchmark circuits, with the exception of the XOR, exhibits some early
output behaviour. Of the 12 benchmarks, the majority of circuits follow a very similar

pattern on the graph despite their differing function and number of inputs.

General trend

Most circuits, despite their differing numbers of inputs and depth of logic, will follow a
very similar pattern. This has been observed on many other circuits not presented here and
the average number of inputs present before a result is generated is generally between
75% and 85%. For the XOR circuit this is 100% and for the AND circuit it is 25%. The

adder design needs on average 78.66% of inputs to be present before generating an output.
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Large OR circuits

Both the AND and the CmpEQ benchmarks give favourable results due to their use of
large OR gates. The AND gate has a large OR gate to generate the zero result. Both these
circuits need just one of the inputs to the gate to be activated in order to generate a result.
In the case of the AND benchmark this is achieved by any arriving input being low. In the
CmpEQ benchmark the result could be generated by any pair of bits being present but
differing. This brings the probability of the function to not be able to generate a result

down even with very few inputs valid.

Because it is difficult to observe the function of the circuit in its usual application, a
complete input set was chosen to determine the behaviour of these functions. This does
mean that the probability of the two numbers not being equal in the CmpEQ benchmark

Is 0.39% while in an application this may be much higher.

The “Random” Benchmarks

Even with a random distribution of outputs to inputs it is possible to generate early
outputs. The random benchmarks have no regular structure. The best performing circuits
(such as the AND) have a large regular structure. The generation of early outputs does not
rely on the existence of a regular structure (although it is beneficial) but rather on the

existence of adjacent input states with the same output state (i.e. don'’t cares).

Adjacent input states differ by one input and would be adjacent in a multi-dimensional
Karnaugh map. In the random benchmark there is a 50% chance that any two adjacent
inputs would have an equal output value. The differing input can be marked as a don’t care

in the situation where all the other inputs are present. In a situation like this the desired
output has been determined and could be generated. In situations where two of these
combined input pairs are adjacent and generate the same result the same strategy can be
used to remove yet another input from the care list in that situation. This process can be
repeated to determine the full set of early outputs irrespective on the circuit construction.
The Early tool can not only determine which early outputs are generated in the composed

circuit but also which would be possible using a ‘perfect’ circuit.
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6.1.3 Perfect circuits

A perfect circuit is one which captures all possible early outputs. A circuit does not have
perfect coverage if upon the arrival of an input the same output is generates irrespective
of the data of the input. A perfect circuit would have generated an output without the

presence of that input.

The ability of a circuit to generate an output is dependent on its construction and in the
random benchmark it is possible to see the effect of a Boolean minimization tool over a
simple composition strategy. The graph in figure 6.2 shows the performance of the two

Random benchmarks along with the perfect circuit.
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Figure 6.2: Early outputs in the Random benchmarks compared with the perfect circuit

As predicted the probability for a perfect random circuit to generate an output with one
missing input is around 50% (actual result is 52.34%). The probability of generating a
result with an arbitrary number of inputs missing WOL([EI/Z(ZX-l)) where X is the

number of missing inputs. In the case of two missing inputs that would be 12.5% which

again is close to the observed value of 13.84% in the perfect circuit.
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Abilities of perfect circuits can be determined for each of the benchmarks and as before
these can be plotted on a graph (shown in figure 6.3). This shows the theoretical limit to

the improvement in the early output abilities of the circuits.
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Figure 6.3: Early output cases in perfect circuits

A more important graph would be one which shows the difference between the composed

and the perfect circuit in each benchmark. This graph is shown in figure 6.4.

6.2 Attaining perfect circuit properties

A composed circuit’s inability to generate all early outputs can be analysed and a better
method of constructing circuits can be used to ensure a highly early output behaviour.
Each of the benchmarks can be observed and the reason for its non optimal performance

can be shown.
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Figure 6.4: Missed early output cases in composed circuits

6.2.1 Optimum by composition circuits

Four of the benchmark circuits gave perfect early output coverages (AND, Adder,
CmpEQ and XOR). The reasons for each benchmark’s ability to cover fully the complete

early output set show which constructions are unable to miss early outputs.

The XOR has the simplest explanation for its perfect performance as it has no early

outputs and so none can be missed.

The fundamental components (AND and OR gates) have been designed to capture all the
early output cases and using any logic of depth one (composed of a single gate) will have
a full coverage. The AND benchmark is composed of a single gate and thus will capture
all early output cases. Even if the implementation would be formed from a tree this

property would be preserved.
The CmpEQ benchmark uses a combination of a XOR gates and a basic gate.

In order to determine how to achieve optimum early output performance, the un-caught

early output states must be examined. To demonstrate a missed early output a simpler
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circuit will be used. A 2:1 multiplexer presents as an output one of two inputs determined
by a select input. The composition of the circuit can be shown and the reason for the

missing early output demonstrated.

6.2.2 Multiplexer missed early output example

The standard 2:1 multiplexer circuit consists of three gates in an AND-OR arrangement.
It can be expressed as “@)+(B.S)” and the Karnaugh map in figure 6.5 shows the cover

of the input state space.
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Figure 6.5: 2:1 Multiplexer Karnaugh Map

Using the Early tool it is possible to determine the early outputs missed by the composed
logic. In the multiplexer there is one early output not covered by the positive result
generating logic. The output of the early tool below shows the complete set of early

outputs and marks ones missed by the composed logic.

A B S => Result

0 0 X =0

0 X 0 =0

1 1 X => 1Uncaught
1 X 0 =>1

X 0 1 =20

X 1 1 =1

The Karnaugh map not only shows the result in all fully valid input combinations but also
the early output states for the positive output. Early output cases covered by the positive
result generating part of the logic can be seen in a Karnaugh map as any loops with two

or more states covered. In this case there are two of these early outputs each allowing the
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circuit to disregard one input. This is not the complete set of early output cases as the early
tool reports another case not covered by the Karnaugh map or logic. The A.B case is split
between two regions and is not fully covered by either. In the case where the circuit has
received a one on both the A and the B inputs but has yet to receive a value on S, the output
has already been determined but the composed circuit will not be able to generate it.
Effectively the circuit is asked to make a decision between the two regions and until
enough information has been provided to determine which region will be activated the
result will not be generated. This is despite the fact that in either case the result would be

the same and the differentiation between the regions is unnecessary.

6.2.3 OR-AND logic

As shown in the multiplexer example, although there was a missing early output
opportunity in the positive result generating logic, there was none in the negative result
generating logic. The A=0, B=0 case is covered even with S not present. The input circuit

to the example was in an AND-OR (Sum or Products) logic style where a set of implicants

is generated using AND gates and these are then gathered using an OR gate to generate a
result. This logic style allows fast two level logic which is easily minimised using tools
such as Espresso. Many of the benchmarks tested were in the same AND-OR style (7seg,
MUX, Random, RandomMin and Shifter). Although all these circuits managed to miss
some early output cases, none of the missed early output cases were in the negative result

generating logic.

In the AND-OR composed circuits the positive result generating logic is made in the
AND-OR style while the negative result generating logic is made in the OR-AND style.
The OR-AND (Product of Sums) logic does not miss any early outputs and the reason for

this could enable us to build logic which will catch all early outputs.

OR-AND logic is composed of a row of OR gates, each of which accepts a number of
inputs, the outputs of which are all collected in an AND gate. To prove there is no way of
missing an early output in OR-AND logic, the situation of missing an early output will be

shown to be impossible.
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Circuit implementations where, when a number of inputs have arrived but cannot yet
generate an output, yet once an additional input becomes valid, the same result can be
generated irrespective of the value in the arriving input denotes the circuit is missing an
early output. In OR-AND logic, in order to generate a result, all OR gates must become
activated and only then will the AND gate fire and present the output. In order to miss an
early output, the logic must achieve a state where an upward transition from one of two
wires (forming a single data bit) will activate the remaining (not yet activated) OR gate(s)
and thus cause a transition on the output of the AND gate. The two wires in this situation
are the zero and one dual rail pair of one of the inputs. The function computed in a case
where both wires in the dual rail pair are connected to a single OR gate has no
computational value as the result would be consistently one. Effectively a gate in the
circuit used for composition would have to take the input and its complement. The
behaviour of such gates can be predicted with respect to the mutually exclusive inputs and

these inputs (and gates) can be optimised away.

As an example of this the function A.B was passed into the early tool. The output is

presented below.

A B => Values
X X => 0Uncaught

The same result (with a different output value) is derived from the functioA+B:

Again the output is presented below.

A B => Values
X X => 1 Uncaught

Not only is the value along with its complement unnecessary for the computation but all
other inputs to the gate are. As these circuits are computationally redundant and are not
practical, their non-optimal early output performance is acceptable. With the exception of
these circuits there is no other way of missing early outputs in OR-AND logic. These OR-
AND logic functions can have a use to ensure an input is valid before a result is generated
before generating a result for situations which require the presence of all inputs before a
request can be passed on. This technique is used in gathering all address bits before

passing them to the memory in section “Microprocessor datapath” on page 121.
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6.2.4 Full AND-OR Coverage

Itis possible to use an OR-AND structure to implement both the positive and the negative
result generating circuits in the simple guarding system (described in section “Loose
Guarding” on page 55). Simple guarding, due to its use of timing assumptions during the
reset phase, does not impose a restriction forcing each intermediate signal to be encoded
in a delay insensitive code. Backward and forward guarding styles ensure the full
completion of the computation by ensuring the transition of all intermediate values to a
valid state and then returning to zero. Because composing both the zero and one
generating logic in the OR-AND style creates a circuit which does not have delay
insensitive intermediate values, the approach cannot be used in the forward and backward
guarding styles. Instead, either the zero or the one result generating logic must be
composed in the AND-OR style. Because the complementary result generating logic
would be generated in the OR-AND style, if it is possible to ensure the AND-OR logic
captures all early output states, then the full function can be guaranteed to have complete
early output coverage. As the OR-AND side will capture all early output states the method

need only concentrate on the AND-OR logic half.

The method of ensuring all early output cases are covered in an AND-OR is to add extra
regions which cover the remaining cases not covered by any existing region despite the
fact they are not necessary to create a result in a fully valid input set. This is demonstrated

in figure 6.6 where a third region is added to ensure an early output case is caught.
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Figure 6.6: 2:1 Multiplexer Karnaugh Map for early output perfect circuit

The full implicant set which covers not just all the minterms but also all terms with don’t

care inputs, in logic synthesis is referred to as the “full prime implicant set”. Methods of
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deriving prime implicants are part of two level logic minimisation schemes and there are
a number of algorithms. To determine the full implicant set to generate an early output
perfect circuit, there are two methods presented. The first is based on one of the logic
minimisation, prime implicant set generation methods. The second takes advantage of the
input being in the form of a circuit which can be turned into a sum of products form

without generating a full state space map.

Brute Force Approach

The brute force method is one used in the early tool to show the early output coverage of
a particular circuit. It is based on the Quine-McCluskey procedure [47][48] and thus it
inherits the disadvantages of the method. It determines the result of the given circuit in all
possible input combinations. As stated in “Composed Circuits” on page 86, the input state
space is exponential with the number of input® y&here x is the number of inputs).
Although (as with the Quine-McCluskey procedure) a lot of these can be ignored, the
function needs to be broken down into a complete set of minterms and thus functions with

high numbers of inputs can be difficult to process.

For each fully valid input combination, the circuit’s result (O or 1) is recorded in a table.
The pass then runs through all input combinations with one or more not valid inputs in a
sequence, increasing number of not valid inputs (firstly all combinations with one missing
input are considered followed by all combinations with two missing inputs and so on). For
each input state a single Null input (there is guaranteed to be at least one) is taken and for
both possible valid states of that input (1 and 0) the result is looked up in the table. If both
results are valid and equal then this output state is entered in the table. If either of the states
result was Null or if the output values differed the entry is marked as Null. The choice of
the invalid input on which to apply the algorithm is unimportant, as performing the
operation with respect to any invalid input will give the same result. It can be proven that
for a given function C and additional inputs A and B not present in €@ha C.A+CA

= C.B+CB, as a union of any variable and it's complement is always equal to ong (X+

= 1 so C = C.X+CX). Thus performing the operation on either A or B gives the same

result (C).
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Figure 6.7 shows the pass being performed on the 7seg benchmark. The first of the four
tables shows the Karnaugh map of the circuit. Because Karnaugh maps can show the
output of the circuit only with a fully valid input set, several other tables are needed to
show the complete input state space. The second, third and fourth tables show the desired
output state of the circuit with one, two and three of the four inputs missing respectively.
Each table is generated from the data of its predecessor. Each of the entries in the second
table is generated from two adjacent inputs in the first table (the Karnaugh map).
Although the last three tables are represented in a style to match the positioning of the

Karnaugh map, they do not follow the Karnaugh map rules of grouping.

As an example of the insertion of data into each table, the A.B entry in the third table (2
inputs missing and marked in green) is taken. There is a choice of which of the remaining
not valid inputs (C or D) to use to look up the values in the previous table. In either case
(input C shown in red or input D shown in blue) the same result would be reached. The
last table (three inputs missing) has no valid states as a result cannot be generated with

just one input present.
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Figure 6.7: Brute force complete early output set generation phase one

The second pass considers all possible input states, this time running from the greatest
number of missing inputs to the least, for insertion into the final list of implicants.
Implicants are only inserted if they are not a subset of an existing implicant in the list. This
process is shown in figure 6.8. The first table cannot contribute any implicants but the
second table has three. It must be stressed that normal Karnaugh map rules do not apply

and the number of states covered by an implicant changes from table to table. The
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implicants from the previous table are then marked on the next table (shown in green) and

any states not covered are added to the list.
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Figure 6.8: Brute force complete early output set generation phase two

This strategy is simple to implement and, as a by-product, determines figures for the early
output abilities of the perfect circuit across the full input space. Unfortunately, even on
optimised code, this approach takes several minutes on an 18 input circuit and the time
triples with the addition of each input (complexity OB This makes the re-synthesis of
large circuits infeasible. The generation of the perfect AND-OR early output cover can,

however, be achieved without analysing the result of every possible input combination.

Analytical Approach

The analytical approach avoids the complexity explosion of the brute force method.
Unlike the brute force method the analytical algorithm requires a circuit in the AND-OR

form as an input. The first (and most complex) step in the method is to flatten the circuit
into a canonical form (AND-OR structure) composed of a set of implicants. This does not
necessarily have to be a minimal or an optimised set as different implicant sets with the

same coverage will yield the same result.

Once the desired function is represented as a set of implicants, the algorithm can be
applied. As described in “OR-AND logic” on page 93, a missed early output exists in

situations when there exists an input state where the arrival of an additional input will

Chapter 6: Application and Analysis 98



6.2 Attaining perfect circuit properties

generate the same valid result for all possible input states. To ensure that this case is
caught, the process needs to know the input for which the early output was missed and the

state of the other inputs in that situation.

The algorithm to capture all remaining missed early output states is based on the fact that
a missed early output exhibits itself through a situation where an input can arrive in a
given circuit state and upon presenting either value (1 or 0) to the function the result will
be the same. For this reason each input is tested for this occurrence. For each input the
implicant set is divided into three parts. The zero and one sets where the desired value for
the input is zero or one respectively, and the don’t care set where the value of the input is
not necessary for the generation of the output. The intersection of the zero and one sets
(common areas in the two implicant sets) is taken and merged with the original set. This
gives the areas of the circuit where the input was not necessary to determine the output of
the function. This is done for each input and the whole cycle is repeated until no new

implicants have been added into the set.

To demonstrate the process in more detail the algorithm will be shown applied to the 7seg
benchmark. The original set of implicants are listed below. This forms the master set to

which additional implicants will be added.

AB+B.C+ B.CD+AC. D+ A.C.D

This implicant list is then broken up into the three sets with respect to one of the inputs

(in this case A):

0: A.C.D
1:AB+AC. D
X:B.C+ B.CD

The Zero and One sets, can now be merged to find the common areas in both sets with
respect to A. To achieve this, the sets are ANDed together to generate a list of implicants

which exist in both the One and the Zero sets. Before this is done, the zero and one sets
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of implicants are divided bf and A respectively to report only the common regions with

respect to A.

(implicants with A) . (implicants with A)
(C.D).(B+C. D)
=B. C.D+ T.D.C.D

Of the two resultant implicants, only one can occuiGm®), while the otherC.D.CD) is

the result of finding the intersection of mutually exclusive regions and can be removed
from the set at this stage. The set is then merged with the master set. In order to add the
implicant to the function it must be ensured to be prime (not a subset of an already present
implicant which could only exist in the don’t care set). Should any inserted implicant
make any already present implicants redundant (by being their superset) these should be
removed from the master list. In this case the implicant is neither in the subset of any
implicant in the don’t care set nor a superset of another implicant in the master set, and
thus is inserted into the original function. If it is a subset of an implicant in the don’t care
set then it would not be inserted. If it is a superset of an implicant (or a number of
implicants) in the master list then it would replace these entries in the original function.
This is demonstrated when the algorithm is applied with respect to C, where the
intersection between the newly adde€® implicant and B.C from the original function

(with respect to C), generates an implicant@Bwhich is the superset of B.D. The new

implicant would replace the subset implicant in the master set.

After the method is applied with respect to all inputs and no new implicants are added to
the function the process is then complete. The final generated circuit adds three additional
implicants into original function4.B.C + A.C.D + BD). The complexity of this method

is approximately O(R).

6.3 Early output function used in larger circuits

The sequencing of early output circuits is less uniform than DIMS style designs due to the
data dependent timing in the result generation. Although this behaviour has been shown
to be beneficial in a single pipeline stage, the ability for a larger circuit to take advantage
of early output schemes will be demonstrated. First the early output circuit operation will

be demonstrated in detail in order to explain its behaviour, then larger and more realistic
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circuits will be assembled and their ability to use the methodologies described in earlier

chapters will be presented.

6.3.1 Early output demonstration

To demonstrate and observe the behaviour of early output systems, an example will be

used to illustrate different aspects of the methodology.

Decrement circuit

The circuit chosen to demonstrate the properties of the early output systems is a
decrementer. The unit decrements its internal value until it reaches zero, the next value is
then loaded from the input; in this case the input is an external constant. The unit can be
used to count a specific number of cycles and output values dependent on the state of the
internal value e.g. counting the operations in a cyclic divider. In this design no outputs are
generated in order to enable the circuit to function without being connected to an external
test-bench circuit. The constant can be fixed to any value and different values give varying

performance in different design styles. The pseudo code of the function is shown below.

a=c=255 /I or another cimput constant
while (true) {

if @ #0) a=a-1;

else a=gc;

}

Figure 6.9 presents the register level implementation of the decrementer circuit. The green

boxes show the positions of half latches.

As well as the half latches shown in the figure, there are additional latches on the carry
path in the decrementing unit. This breaks the decrementer into 32 small stages with few
inputs and outputs. This method was explained in section “Vertical pipelining” on

page 42.
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Figure 6.9: Decrementer register level design

S2A tool

A tool to take the specification netlist and convert it to any of the dual rail design styles
described in the previous chapters was developed. The available back-end

implementation styles are:

Delay insensitive minterm synthesis (DIMS)

Backward guarding early output

Forward guarding early output

Loose guarding early output

The system can not only generate an output netlist but can also simulate the circuit to

determine its relative performance.

The performance figures throughout the rest of this chapter will be in terms of the number

of operations executed in a 100,000 gate delay interval.
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6.3.2 Circuit operation analysis

Many factors can vary the operating speed of a circuit and as an example the value of the
constant in the decrementer example was varied to demonstrate its effect on the different
design styles. Figure 6.10 shows the performance of each circuit with different values for

the constant being read in.
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Figure 6.10: Cycle count variation effect on operation speed

The early output versions have similar behaviours and have the same factors affecting
their performance while the DIMS version has different factors affecting its performance.
In this analysis, inputs with sizes from 0 to 32 are used by presenting constants with values
of 251 (i.e. 2-1=0 to 2%1=0xFFFFFFFF).

DIMS circuit

DIMS circuits have no early output states and so their performance is generally quite
independent of the data operated on. This can make the DIMS logic style useful for the

generation of secure systems which behave identically irrespective of the data being
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executed. Simply using the DIMS approach does not give a fully balanced system as there

are two paths through a DIMS gate (see figure “2 input DIMS OR gate” on page 40).

Imbalances are visible in figure 6.10 with the variation in the operating performance with
respect to the loaded constant value. The worst case path in the circuit passes through the
full length of the borrow chain of the decrementer unit, composed of AND gates which
propagate the signal. These AND gates have two paths through the gate with different
delays. The short path through the gate is the situation where the borrow input is high and
the current bit is low, this propagates the high borrow signal to the next bit. The long path
through the gate propagates or generates the low borrow signal to the next stage. The
length of the high borrow propagation is equal to the number of leading low inputs (from
the least significant end) in the input number. This is normally very short and in 50% of
cases itis zero. For a random number the length of the high borrow chain is one (50% of
the time itis 0, 25% of the time itis 1, 12.5% of the time itis 2 and so on, averaging to 1

). In the case where the input number is zero the borrow chain will propagate all the way

up though the width of the unit.

In the DIMS design, the length of the high borrow chain has a direct effect on the delay
of the unit. For large numbers which do not reach zero during the simulatidra(@l

above or point 11 on the graph) the length of the high borrow chain is on average one. For
the number zero, as the constant in the circuit, the length of the borrow path would be the
bit width of the unit each time. For input sizes between 0 and 11 the average high borrow
chain length is the average delay plus the frequency of the occurrence of the zero delay

times its additional length from the length over the average.

The graph in figure 6.10 shows the performance of the system matching the explanation
above. The shortest delay through the unit occurs when then constant is zero. As the
constant increases so does the delay and the performance drops. The effect is decreased

until no longer visible past the point when the size reaches 10.

The 32 input OR gate &9 unit) comprises two layers of four input OR gates and one layer
of two input OR gates. For this reason the introduction of high bits into the top eight or

top two bits causes additional delay as the longer paths are taken through these gates.
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The DIMS circuit performs best when there is a worst case borrow propagation and, in the
case of the large layered OR gate, in situations where no early output would be possible.
Not only does this create slow circuits but the change in performance of these circuits with

different inputs is counter intuitive to the designer.

Early Output circuits

The first property of early output circuits visible on the graph is their speed relative to the
DIMS designs. The second important feature is the different effect of the size of the
constant on performance. The early output plots on the graph can be broken up into three
parts representing the areas where three different factors have the primary influence on

performance. The first area is between s=0 and s=4.

With small numbers in the decrementer, the probability of the number being zero and a
new number being loaded is relatively high. The early output circuit can take advantage
of this and, even though the full decrement operation being performed on zero takes a
relatively long time, the result can be dismissed and instead the constant is loaded into the
register. This part of the graph looks similar to the DIMS line but itis for different reasons.

If the result of the addition was required when the input was zero this would be the lowest

point on the early output line.

In the area from five to 15 the performance increases in a linear manner with the size of
the constant. This is due to the borrow chain in the long string of low bits above the
constant rippling the borrow signal. The signal cannot be determined without the input
from bits lower down. Units with a high input bit can determine the borrow out but due to
the lack of these in the upper bits the delay of the long path has a direct impact on the

performance.

Constants from 15 bits long and higher are unable to continue the trend of increasing
performance as the path through the decrementer is no longer the slowest path through the

system. Instead a path elsewhere in the system is the obstacle in the performance.

As shown, the effects on the early output designs are different from those experienced by

the DIMS designs. Although the performance is greatly increased over the DIMS design,
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the limit on the speed demonstrates that the circuit could perform much faster if another

slow path was removed.

6.3.3 Slowest path

Synchronous circuits have a simple global clock system where all signals are
synchronised to latches at each cycle and emerge at the next upward clock edge. This
makes determining the slowest path in the system trivial. Asynchronous logic does not
have a system where the data must propagate from one point to another in a fixed amount
of time. Instead the execution of the entire program can be considered as a path of
transitions from one point in the system to another. The start point would be the release
of the reset signal and the end point would be the signal which indicates the completion
of the task. Like the synchronous system, the shorter this path, is the faster the system will
perform. Unlike the synchronous model the asynchronous slowest path can pass through
any element or wire several times. This makes a simple time-stamping approach to

determine the worst case, such as that described in [40], impractical.

As demonstrated by the performance cap on the decrementer design, in early output logic
the path of the slowest route is not always clearly visible. Additionally, as synchronous
methods are not applicable, a novel method must be developed to tackle this problem. A
dynamic approach, blame passing simulation, to determine the slowest path will be

presented and its use in optimising the example design will be demonstrated.

Blame passing simulator

The blame passing simulator allows circuits to be simulated in a test-bench environment
and the slowest path to be extracted. Although static timing analysis is not used in this
approach, some aspects of it must be understood as they also form the basis of the

dynamic method.

The static approach runs through the input netlist marking the arrival time of signals. This
process starts at the outputs of the storage elements (flip-flops) which are marked as time
zero. Any gate with all its inputs marked can then mark its output as the last signal to

arrive plus the delay of the gate. Once completed the net with the latest arrival time is
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marked as a point in the slowest path. The last input to arrive at the gate generating this
signal is marked as the next point in the path. The process is repeated until the input flip-
flop is reached. More complicated approaches such as holding the time stamp for both the
up-going and the down-going edges or even taking account of cross-talk can give more
accurate results. The major disadvantage of this approach is its inability to handle non uni-
directional circuits due to cyclic dependencies. Secondly the approach can often find a

slowest path which cannot occur due to some signals being mutually exclusive.

An example of this would be a circuit with selectable pre and post increment units
attached. Only one increment unit would be activated and the other is bypassed.
Unfortunately the worst case path would assume both are activated. The alternative of
having a single unit, which can be multiplexed into place in front or behind the function,

would introduce cyclic dependencies.

Blame passing analysis works using a similar strategy to the second phase of the static
timing analysis. Starting from a transition which indicated the completion of the test
program, the gate which caused this transition then looks at the input which caused it to
flip its output. This process is repeated until the initiation signal for the circuit is reached
(this is usually the release of the reset signal). This approach requires the simulator to
record the cause of each transition in the circuit throughout the simulation. Such a record

would be very large and only a small portion of it is relevant.

To allow longer simulations, the blame path for each transition is calculated during the
simulation and only the relevant paths are stored. Non-critical paths are freed allowing
only useful information to be stored. Each new transition during the simulation allocates

a record which is marked with the cause of the transition and a reference count. The cause
transition gets its reference count incremented. Should a transition be unable to cause any
gates to transition their output (the reference count remains at zero after all gates it feeds
to have been processed), the transition record is freed and its parent’s transition reference
count is decremented. Should the parent’s reference count also drop to zero the process is
repeated releasing a thread of transitions which accumulate to a non critical path. As the
product of these transitions has arrived to all gates it affects early, it does not need to be

optimised and is of no interest. The advantage of this approach is that it looks at the
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average case operation (as described in the test-bench). It cannot determine the worst case

operation.

The blame passing extension to the simulator has a small impact on its speed (30%
decrease) and gives a good view of system execution. To demonstrate the method, a
simulation of the decrementer circuit was conducted. The constant chosen for the
simulation was the full width of the pipeline (32 bits) as, in this setup, the circuit performs
much slower than expected. The extracted slowest path should present the cause of the
poor performance. To allow easier analysis, the path can be superimposed on a diagram
of the design. To generate such a diagram the coordinates, on the schematic, of all wires
in the design can be fed to the simulator which then generates a list of vectors which can
be plotted. In this case, as the circuit was not designed using a graphical tool, the
coordinates for the wires were manually generated. Figure 6.11 shows the path for the

simulation.
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Figure 6.11: Slowest path of the decrementer example with zoomed segment

The blue and red lines represent the up and down transitions of the signals respectively.
The width of the line shows the frequency of a transition’s occurrence in the slowest path.
The details in the diagram are not important and the significant part has been enlarged. In

addition to the diagram, the simulation data can be used to generate a table reporting the
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proportion of time spent in each unit (or set of units) in the system. In this case 77% of the
slowest path transitions occurred within the decrementer unit. A closer inspection of the
figure or the log file shows the presence of a long chain of transitions which take up the
majority of the cycle time. The path follows the ripple carry chain along the zero request
path. When all the input bits are high, the carry out can be generated locally and the
critical path does not stretch from the bottom bit but this path is not on the positive
transition but rather the negative one. Although using early output gave the advantage of
being able to generate the results without waiting for the full ripple carry to reach every
bit, the reset phase still requires a full completion to be performed. This forces the highest
bit to observe the data being released by all inputs. As the carry zero output is driven by
an OR gate of the carry zero input of the previous stage, the output will remain high until
the carry input has been released. This dependency then stretched all the way to the lowest

bit and causes a full ripple to be performed.

Once the cause of the delay has been determined, an appropriate optimisation can be

applied to correct it.

6.3.4 Circuit optimisation

Due to the non globally synchronised operation of asynchronous circuits, their behaviour
cannot be broken down into single clock cycle segments and analysed independently.
Without applying very restrictive assumptions it becomes difficult to analyse the circuit

operation using a static approach. Instead the optimisation system which will be described

uses the information from dynamic timing analysis.

The full system breaks into three parts:
* Analysis: observes the circuit and identifies its weak points.
* Optimisation: determines changes which could be beneficial

* Re-analysis: applies a prospective optimisation and observes the circuit

performance
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This becomes an iterative process as each optimisation changes the behaviour of the

circuit which then needs to be re-evaluated before the next optimisation is applied.

Example optimisation

The example decrementer circuit’s slowest path determined in the previous subsection
can be used to find the most appropriate optimisation. As described before, the main delay
in the slowest path is in the decrementer carry chain on the downward transition. This
downward transition, passing through a latch along the request (data) wires, is indicative
of a position where an ‘early drop’ latch can improve the circuit’'s performance. The full
table of possible optimisations and the slowest path route which indicates where each use
would be beneficial will be shown in the subsection 6.3.4. In this case early drop latches
are likely to be better suited in the place of the carry propagating half latches. Replacing
any of these latches will change the behaviour of the circuit resulting in an circuit where
the slowest path no longer takes the same route. Blindly applying all the recommended

changes suggested by the slowest path, in a single step, can yield a much poorer circuit.

It is a good idea to apply only one of the possible optimisations before re-analysing the

circuit. This is a demonstration of one of the weaknesses of the approach and the reason
why a fast simulator is necessary. The simulator can evaluate each of the possible
optimisations to determine which have the most positive effect and then once it has been
committed the cycle can begin again. In this case there are 31 possible optimisations in

the carry path alone.

To demonstrate the effect of some of the optimisations, three were plotted on the graph
against the decremented constant number as shown in figure 6.10. Figure 6.12 shows the
performance across the different numbers being operated on across three possible
optimisations along with the original circuit. The three chosen optimisations shown on the
graph are: replacing the latch on the carry-out of bit-slice 2 (LGEO_SD2), 16
(LGEO_SD16) and 24 (LGEO_SD24) along with the original circuit (LGEO).

In the LGEO_SD16 optimisation the early-drop latch is placed (approximately) in the

middle of the carry chain. This gives good balance, effectively cutting the delay caused
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Figure 6.12: Analysis of possible optimisations

by the release of the carry chain requests in half. This only happens once the constant has
reached a size where the input values are high beyond the latch. With constants reaching
the newly placed latch, the carry chain can be interrupted and the release of the carry chain
can begin from half way across the decrementer. This improves performance but, with
small constants, the lower part of the decrementer still takes a long time to complete. The
upper part then will not get the carry in it requires to complete and start the release of the
carry. When constants with high bits in the upper part of the decrementer are used the
upper part can start the next computation cycle independently, bar its bottom bit which

still needs to interact with the lower half.

The LGEO_SD_24 optimisation gives much poorer results as it requires the constant to
be very large before the jump in the performance and because the latch is placed towards
one of the ends the delay caused by the release of the valid signal along the carry chain is

not cut in half. Instead the path is shortened by eight stages.
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The placement on bit slice two (in LGEO_SD_2) is also a poor choice. This not only does
not shorten the carry drop path very much but also interferes with a frequently used part

of the decrementer by adding an extra delays in the critical path.

Although some of the factors contributing to the performance of the circuit under different
conditions have been explained above, the full range of influences is too large to examine
exhaustively in order to explain every point of inflection in the graph. Itis equally difficult

to determine if an optimisation will have a positive effect on the performance. For this
reason each potential optimisation must be simulated to ensure that it improves the
performance before it is committed to the design. Although each of the optimisations
shown was beneficial with the benchmark parameters applied, each optimisation has a
negative effect in the range of the input constant length between zero and one. The
addition of the early drop latches causes additional delay in the positive edge carry
propagation which, in the case of the zero and one constants, is a primary contributor to

the slowest path.

The importance of having a correct benchmark circuit can be seen in figure 6.13 where
the circuit's carry path was optimised repeatedly with different benchmarks used to
generate the slowest path and observe the post optimisation performance. The three
benchmarks used decrement constants of length 0, 16 and 32. Also shown on the graph is
the original circuit performance to demonstrate how some optimisations can have a

detrimental effect on the circuit in situations not executed by the benchmark.

The primary optimisation used on the circuit with the zero length constant was the
removal of latches from the carry path. The 32 length constant circuit mostly replaced the
carry latches with early-drop latches. The 16 length constant optimisations placed semi-

decoupled latches on bits below 16 and removed latches above 16.

The removal of latches is yet another possible optimisation. It is used when the slowest
path passes through a latch from request in to request out in the positive direction. This is
common with small numbers where the carry propagates along the full length of the unit.

The removal of this latch removes a gate delay in the slowest path but can result in another

slowest path being formed due to the pipeline stage being merged with another. In the case
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Figure 6.13: Performance of circuits optimised using different benchmarks

of the decrementer, vertical pipelining to a granularity of one bit forms stages which are

small enough to be merged and not reduce performance.

6.3.5 Optimisation tables

Relevant optimisation to be applied to a circuit can be derived from its slowest path. A
peephole style optimisation can observe frequently taken paths and apply the most
suitable optimisation. Figure 6.14 shows the most frequently used optimisations. The
effect of these options will be demonstrated later in this chapter when applied to a number
of circuits. The table is laid out to show on the top row the path which when matched will
replace the affected components with the design below. The red lines represent positive
transitions while the blue ones represent the negative transitions. Not shown on the
diagram but equally important is the pattern which predicts if the optimisation will have
negative effect on the performance. Each optimisation and the reasoning will be presented

in section 6.4; the performance increase due to each will be evaluated.
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Figure 6.14: Table for early drop, latch removal and insertion optimisations

Early-drop latch

The use of early-drop latches allows the release of the data values before the data in
requests have dropped. To spot a latch which could be replaced with an early-drop
version, the pattern of request in dropping to request out dropping must occur frequently

in the slowest path.

The early drop latch does have the disadvantage of an additional gate delay in data
propagation. In some situations, despite the frequent activation of the path to be matched,
the use of an optimisation can have a negative effect. These can often be predicted using
slowest path pattern matching. The path which can signify a position where the early drop
latch optimisation is likely to have negative results is the positive transitioning request out
signal caused by either a request in going high or an acknowledge being released. In these
cases the slowest path is increased by one gate delay. This is only a minor increase in the
delay compared with the removal of the data released path and must occur much more

frequently than the request out falling path to have a greater effect.

Latch removal

Often latches can have no effect on performance in situations where the latch is not
necessary due to the system cycle time being larger than the combined cycle time of the
two stages the latch connects. Their presence does not increase the effective pipelining of

the system as the two stages the latch connects can be very small and in a free running
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system the presence of these latches does not increase the number of data values being
worked on at any one time. The latch can, however, contribute to the slowest path which
does add a C-element delay to the path each time it passes through the latch. The removal
of latches is one of the most difficult optimisations from a performance prediction aspect.
This is due to the observation that, in perfectly balanced and optimised circuits, the
slowest path is likely to pass through many latches in this exact manner. Secondly, there
is very little information from the slowest path to determine if the latch is useful in the
system and whether its removal will have a dramatic negative effect on the performance.
One of the hints that shows the latch is useful, is the slowest path passing through the
acknowledge signals of the latch. The removal of a latch which has the slowest path
passing through the acknowledge signals will cause the path to extend to the next closest

latch (from the other stage which has now been merged).

Latch insertion

The correct level of pipelining is difficult to predict by the designer and automatic slack-
matching methods are common place in other tools [49][50][51][52][53]. These tools use
static timing analysis to determine the need for extra latching. A simple latch insertion
technigue would be to take datapaths with single start and end points. These would have
their number of latches compared and the path with fewer latches receives more to allow
both pipelines to be fully occupied rather than one pipeline’s full token occupancy to force
the second pipeline to be starved. This can be seen in figure 6.15 where the top pipeline
Is starved of input due to the bottom pipeline being full. The slowest path in such an
example would run along the acknowledge path in the bottom pipeline from the output

latch, then along the request signals of the upper pipeline.
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Figure 6.15: Not slack matched pipeline
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This static approach may be effective in this example but, here, the dynamic optimization
approach of the blame passing simulation analysis can reach the same results with more
accurate placement of latches. One of the issues with slack matching is the position of the
new latches. These are usually evenly scattered throughout the shorter pipeline. The
dynamic approach has the ability to pinpoint the exact point where the extra latch is

needed (or if it is needed at all).

The slowest path route, which signifies a beneficial latch insertion position, passes from
the acknowledge-out of a latch though the latch and out though the acknowledge-in pin.
This can be with either the acknowledge rising and releasing the data out and
consequently dropping the acknowledge-in, or the acknowledge-out allowing new data to
be latched. These paths often occur in series in designs which are latch bound (not enough
latches are present to allow free token flow). The latch insertion does add an extra gate
delay in the data forward propagation and so the optimisation can gave negative results if
the forward propagating request-in to request-out path (in either the positive or the

negative direction) occurs often in the slowest path.

Anti-token latch

The last optimisation demonstrated in this chapter is the anti-token latch. The path is
shown in the top part of figure 6.16 along with the description of which latch design it

should be replaced with.

R
From | —
ARER
To
Rl 2 AT
pof=

Figure 6.16: Anti-token latch optimisation
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Anti-token latches generate the valid-out signal early. This allows it to receive an
acknowledge before transmitting any data. The advantage of doing this is the latch does
not need to wait for data to be presented to it before the validity is generated and the cycle
is completed. The path to be matched thus flows from the request-in to validity-out of the
latch. The anti-token latch has many transition sequences where it performs more poorly
than other latches and it does rely on a larger set of timing assumptions being made. These
were discussed in the previous chapter and, although it is possible to define and uphold
them, due to the added complexity in the placement and routing of the design, it is
generally favourable to avoid the use of anti-token latches where they do not add to circuit

performance.

The four optimisations shown have been studied and their benefits will be shown at the
end of this chapter. Additionally to these there are a number of optimisations which were
found but whose benefits have not yet been fully explored. These optimisations exist
below the architectural level and require further study to examine their effectiveness. The

three additional optimisations are presented in figure 6.17.
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Figure 6.17: Table for retiminag and tree reshaping

Retiming

Retiming [54] in synchronous designs allows stages of the pipeline to become balanced
and increase performance by moving gates from a deep stage to a shorter neighbouring
stage. Imbalance in stage sizes is also a problem in asynchronous designs. The slowest
path can be used to spot stages which, if shortened, would yield higher performance. In

an asynchronous system, where the performance is bound by the speed of a stage which
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is slower than any other, the slowest path will run up and down the stage propagating
along the request/validity signals and back along the acknowledge path. Because all
neighbouring stages are faster, the data is always ready to be accepted by output latches
and new data is always ready to be consumed at the input latches. In such a system the
slowest path is positioned along the acknowledge network until it reaches the input latch,
and because the acknowledge is always the later to arrive, (rather than the data in) the path
then continues along the request/validity wires. Once it reaches the output latch, because
the data is always ready to be accepted, the slowest path then returns along the

acknowledge network.

The first two optimisations in figure 6.17 spot situations where the stage could be
shortened by pushing gates through latches in the cases where the slowest path exhibits
behaviour common with that of large stages. This optimisation does have the
disadvantage of changing the circuit so, when observed in simulation, it no longer directly
reflects the original layout of latches placed by the designer. Secondly the pipeline stage
borders are often placed by engineers at the points in the datapath where the number of
signals to be latched is lowest. An automatic retiming algorithm can increase the number

of latches needed by placing them in inappropriate places.

Tree reshaping

The validity and acknowledge networks in early output designs are formed from large
trees of C-elements. These are not balanced as some networks need to adhere to the race
conditions and leaving them in their directly translated state makes it easier to uphold
these timing assumptions. Some trees (such as acknowledge networks) do not have timing
assumptions placed upon them which prevent the trees from being balanced. Tree
balancing is a well researched topic in software engineering where keeping all paths to
nodes roughly equal length allows the tree to have a shorter average length than an
unbalanced tree. This is a reasonable strategy if the likelihood of requesting each node
was roughly equal or this probability was unknown. Better systems, such as the Huffman
encoding trees [55][56], allow the more frequently used nodes to be placed closer to the

root of the tree.
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In early-output circuits the slowest path frequently passes through a tree of components.
The tree could be restructured to allow this path to become shorter at the penalty of other
inputs having a longer path (as demonstrated in the third optimisation in figure 6.17). This
Is often not a problem as these inputs will probably arrive far ahead of time. If this is not
so, and the restructuring moved an input to become a part of the slowest path, then this

input becomes a priority and also gets moved closer to the root of the tree.

6.4 Large design demonstration and analysis

The abilities of the optimisations and design methodologies presented will be shown
across a number of designs and test-benches. The performance of three benchmark
circuits will be examined across different execution parameters for each. Each of these
benchmarks will then be optimised with different sets of optimisation rules to allow the
benefit of each to be demonstrated. The early output designs will then be compared with
the designs made in alternative design methodologies: synchronous, bundled data and
DIMS.

Firstly each of the circuits and their benchmarked modes of operation will be presented.

6.4.1 Benchmark designs

Three designs of varying complexity were chosen to demonstrate the performance of the
early output logic, anti-tokens and optimisation scheme which makes use of different
latch designs. Each benchmark also has two modes of operation upon which the

optimisations will be based.

Decrementer

The decrementer circuit was presented earlier in this chapter. Two modes of operation use
the input constant values of 0 and OxFFFFFFFF. The two different modes of operation
place very different demands on the circuit and will generate circuits unsuitable for

execution in the opposing mode of operation.
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Greatest common divisor

The GCD example design has two registers (A and B) which contain values of the two
numbers for which the greatest common divisor is to be calculated. With each iteration of
the functional unit, the registers get updated with the values of their remainders after being
divided by each other. This is done using two divide units which throw away the result of
the division and feed out only the remainder. The values of the registers are also tested to
see when either reaches zero in which case a new set of values would be loaded into the
registers rather than reading in the next set of remainders. The following is the pseudo-

code of the circuit.

a=ca=223; /lfor the Fibonacci or O for the Zero benchmarks
b =cb =144, /Ifor the Fibonacci or O for the Zero benchmarks
while (true) {
if @==0|| b==0){
a=ca;
b = cb;
}

else {
a=a%b;
b=b% a;

Values ‘ca’ and ‘cb’ are the new values to be loaded and computed, these are dependent
on the benchmark. The first benchmark uses 0 as one of the values which will instantly
throw the number pair away and fetch the numbers from constants again. This benchmark
doesn’t make use of the dividers and its ability to decouple itself from them will be
observed. The second benchmark will use the dividers in nearly all operations and a result
generation will be a rare occurrence. The numbers which give the largest number of
iterations before a number is generated are the consecutive number pairs from the
Fibonacci sequence. The numbers used will be 233 and 144 which are the two greatest

Fibonacci numbers which still fit in an unsigned 8 bit number space.
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Microprocessor datapath

The final example is that of a microprocessor pipeline. The pipeline was extracted from
an open source five stage RISC microprocessor design [43]. The pipeline control signals
are connected to random value generators to allow the pipeline to execute random
instructions without the need to simulate the instruction decode logic. The first stage in
the pipeline (Instruction Fetch) is completely skipped. The four simulated stages (Register
Fetch, EXEcute, MEMory and Write Back) are also trimmed to simplify the simulation.
The register bank contains only four registers and the values from accesses to data

memory are always the address supplied.

The delay of the data memory can be varied. The delay starts once all bits of the address
are present. The two benchmarks observe the operation with the delay set to zero and 50

gate delays.

6.4.2 Optimisation results

Each of the test circuits was optimised for its benchmark inputs using three levels of
optimisation along with the non optimised design (labelled “Early None”). The first
optimisation balances the stages through the addition and removal of half latches (labelled
“Early Half"). The second optimisation replaces some half latches with early drop latches
(labelled “Early Drop”). The third optimisation also where beneficial adds anti-token
latches (labelled “Early Anti”).

To compare the designs to the DIMS alternative each circuit is also implemented in the
DIMS design style. Results are shown for the original unoptimised DIMS design (labelled
“DIMS None”) and a design which has gone through the same optimisation system
(labelled “DIMS Half”). Due to the early output specific nature of the early-drop and anti-

token latches more advanced optimisations were not possible on the DIMS design.

Finally the critical path can be extracted from the input designs and the logical depth of
the slowest stage can be derived. This is then used to present the maximum speed for a

synchronous design. The delay is that of the gates only and does not include the delay of
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the latching elements nor any overheads to allow a margin of error due to poor

manufacture or environmental conditions (voltage temperature).

Decrementer

The decrementer circuit was placed in a test bench and allowed to operate for 100,000

gate delays. The numbers of operations executed were recorded and are shown in figure
6.18.

DIMS None
DIMS Half
Early None
Early Half
Early Drop
Early Anti
Synchronous

EROONCN

Operations Executed

"Zerg" "Full"

Figure 6.18: Decrementer benchmark performance

The two value clusters show the operation speed with the circuit counting down from two
different numbers. The “Zero” benchmark counts down from zero and so fetches a new
number each time it executes a cycle. The “Full” benchmark decrements a maximum 32

bit integer. This does not reach zero within the benchmark and so a new number is never
fetched.

As was shown in section 6.3.2, the zero benchmark is favourable to the DIMS design.
Because the slowest path, in the benchmark of the DIMS design, travels through gates
along the fast path (rather than also going through the OR gate, as described in section

6.3.2) the performance benefit of the basic early output design over the DIMS counterpart

Chapter 6: Application and Analysis 122



6.4 Large design demonstration and analysis

is relatively small. The effect of balancing the stages and inserting/removing latches in
order to streamline the design benefited both the DIMS and the early output designs and
increased their performance by approximately 50% but this still leaves the early output
design only 16% faster. The early output design also had the advantage of being able to
apply further optimisations. Here the early drop latch insertion yielded no improvement
in performance but the insertion of anti-token latches allowed a further performance
increase to over 4000 operations. This translates to a cycle time of less than 25 gate delays
for a synchronous critical path composed of a 32 bit carry ripple incrementer followed by

a multiplexer.

The “Full” test bench allows the decrementer unit to execute with a shorter carry path. The
DIMS circuit is penalised due to its use of the slower path through its gates. The
performance remains poor even after half-latch insertion/removal optimisations. The
early output circuit starts faster than the optimised DIMS version and benefits greatly due
to the insertion of early-drop latches. The reason for this is explained in section 6.3.4. Due
to the circuit never reaching zero in the testbench, there are no situations where a result is
thrown away and the anti-token latch based optimisation does not increase the
performance much. Despite the lack of anti-token causing situations, the latch is still
beneficial to the circuit in places where the stage is awaiting data from one of the inputs.
Once the input arrives the data is consumed and propagates to the next stage faster than
the stage validity is calculated. Placing an anti-token latch in such a situation allows the
stage to pre-compute the validity before the data arrives. The anti-token latch optimisation
(fig. 6.16) detects both cases. This is because ability of the stage fully to complete and
generate an acknowledge without the presence of the last remaining input is not required
in the optimisation pattern match (also it is very difficult to detect such a situation). The
fully optimised circuit executes at a 20 gate delay cycle time compared with 73 gate delay
cycle time of the original DIMS design or 35 date delay critical path of the synchronous

version.

Greatest common divisor

The GCD benchmark uses a deep pipeline stage which is very finely pipelined with half

latches. This makes the tokens going through the stage spaced out and it rarely stalls due
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to contention for hardware. Additionally, the early output properties of the circuit are very

good. The results of the tests are presented in figure 6.19.
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Figure 6.19: GCD testbench results

The DIMS circuits performed poorly in both benchmarks due to their inability to take

advantage of any early output cases. The half latch based optimisation in the DIMS
designs gave a small performance boost and the benefit only came from the removal of
many already present latches which added an unused level of pipelining and instead

increased the latency of the data propagation.

The early output circuits performed much better due to their ability to exploit early output
cases and not suffering from hardware contention (which can often bring the performance
down close to the DIMS level). Because of the fine pipelining of the stage, the half latch
optimisation (just like in the DIMS design) removed many latches which were impeding
performance. Because of the separation of tokens during execution, the early drop latch
had no placement where it would be beneficial to performance. The anti-token latch had
an impact on the performance of the “zero” benchmark where the next set of numbers to
be computed would always be picked from the constants rather than the results of the
dividers. The same effect could not be gained in the Fibbonachi test as, even after a new

value had been loaded, there is no benefit in removing the current values from the pipeline
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as they are so spread out they will not impede the progress of the next wave of

computation passing through the divider.

Microprocessor datapath

The microprocessor datapath benchmark was tested with two delays for the memory
operations. The first has the delay set to zero while the second testbench uses a delay of
50 gate delays for a memory access. Because control signalling is generated randomly,
the frequency of different situations in the benchmark does not reflect their occurrence in
real applications. The probability of a load operation is 50% and the probability of a
subtract with both operands being zero (creating a maximum carry propagation chain) is
25%. Because of these factors, the early output circuits executed a little slower than a
version executing real code. Despite this, the early output circuits are faster than the
DIMS approach and arguably also faster than the synchronous equivalent. Figure 6.20

shows the results of these benchmarks.
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Figure 6.20: Microprocessor data-path testbench results

The DIMS circuits in both cases trimmed the level of vertical pipelining across the adder
in the ALU. This has differing effects on the two benchmarks. In the version with no

memory delay this approach gives a reasonable performance increase. In the fifty gate
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delay version, the slowest path moved from the ALU to the memory stage and decreasing
the latency of the ALU did not affect the performance. Instead, this version concentrated
on balancing the latches around the memory stage to increase performance. There was

only a little room for performance increases.

The early output circuits generally performed better than the DIMS versions. The removal
of half latches from the ALU (just like in the DIMS version) had a small impact on the
performance in situations where the full carry propagation path is in the slowest path. The
early-drop latches did not find any situations where they were beneficial and nor did the
anti-token latches in the zero delay memory version. In the long memory delay version
the anti-tokens proved very valuable as they managed to bring the performance to close
to that of the zero delay version. This was done by placing the anti-token latches across
the output of the memory stage to throw away data which was not needed. This allows the
system not to take the penalty of the 50 gate delay on half of the operations executed.
Additionally anti-token latches placed in the forwarding multiplexers allowed the
memory operation data to be discarded at the multiplexers before it arrived, thus allowing
them to not to synchronise with the slow memory operation. This has the ability of hiding
the performance hit of a single memory access. The de-synchronisation of the inputs of
this multiplexer has a capacity of half an anti-token and thus will only be able to hide a
single memory access and only if the data from the memory stage is not required by the
execute stage in this cycle. Because of this, performance is still impacted (even if only by
a small amount). Placing multiple anti-token latches in series will increase the anti-token
capacity, but due to the additional latency of the stage and the rare occurrence of multiple
memory operations with their data requested by the forwarding multiplexers, this

approach only added latency to the system rather than improving its performance.

As a comparison with the synchronous solution, the critical path of the design was 71 gate
delays (full ripple carry plus the forwarding and ALU unit select multiplexers). This does
not include the delay of the flip-flops and the timing margin overhead. This equates to

1408 operations in the 100,000 gate delay simulation.
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6.4.3 Power and Area

So far the main thrust of the early output methodology has been performance based.
Although in the early output approach power and area are not targets they must be

considered in the design process.

The power consumption of any given circuit can be predicted to a reasonably high
accuracy in a static manner. This is because in early output circuits the power
consumption is data independent. The area and power consumption of a circuit can be
broken down into the four parts. These are data latches, gates, additional pipelining
latches and wire forks. In the synchronous design only the first two of these exist (and

consume power).

The data latches in early output designs contain ten gates of which seven transition twice
for each data element they pass. Gates contain three components (AND and OR gates
along with the validity C-element) of which two transition twice for every cycle.
Additional pipelining latches (in this case half latches) consist of three elements of which
two transitions twice per cycle. Finally wire forks require an acknowledge gathering C-

element, this transitions two times per cycle.

The size in transistors of the various components in all three technologies (synchronous,
DIMS and early output) is shown in table 6.1. These are very simple estimates to give
general figures and do not take account of inversions between components etc. The area
increase is dependent on the numbers of each component in the design. In the case of the
microprocessor pipeline the early output design was 5.9 times larger and the DIMS design
was 7.4 times larger. The greatest common denominator benchmark was 6.2 times larger

in both the DIMS and the early output versions.

Table 6.1: Transistor count for each component

Element Synchronous DIMS Early Output
Flip-Flop 14 72 82

2 input gate 4 46 18

3 input gate 6 108 24

4 input gate 8 262 30
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Table 6.1: Transistor count for each component

2 way fork 0 10 10
half latch 0 24 34

The power consumption in the three design methodologies are shown in table 6.2. The
figures show the number of transitions per cycle of operation in different components.
Counting transitions is not a very accurate method of estimating power consumption but
Is presented here as a rough figure of the relative values. Again this is highly dependent
on the numbers of each component in the system. The benchmarked circuits had their
numbers of transitions recorded and the transitions per operation was derived. In all
benchmarks the DIMS circuits had AB times the number of transitions as the
synchronous circuit (assuming the probability of changing data being half and not

considering the clock). The early output designs generated lithes the number of

transitions.
Table 6.2: Transition count for each component per cycle

Element Synchronous DIMS Early Output
Flip-Flop 1, (exc. clock)| 12 14
2inputgate |, 3Y, 4

3inputgate | Y, 43, 4

4inputgate | Y, 6 4

2 way fork 0 2 2

half latch 0 4 6

Both these figures are very high due to the heavy use of half-latches which were not
removed if they did not impede performance of the design. If these half latches were all
removed, early output circuits would be 4 times larger for all benchmarks and would
consume 11 to 12 times the amount of energy compared to a synchronous design. DIMS

circuits would be 5 to 6 times larger and consume 9 times the amount of power.

Obviously these figures are very poor but whether they can be justified is an issue which
will be tackled in the concluding chapter. The figures for systems without any half latches
were presented but these systems would run very slowly. Without any half latches the

microprocessor pipeline executed just 400 operations in the 100,000 gate delay simulation
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(compared with 2135 for a fully optimised version). The easiest method of tackling the
excessive area and power consumption is to remove all unnecessary latches. The slowest
path optimisation system cannot determine the usefulness of a latch and only concentrates
on the performance of the system. A separate system analysis method would have to be
constructed to trim unnecessary latches to move closer to the non half latch pipelined

version.

6.5 Summary

The presence of early outputs in standard logic was presented along with methods of
improving circuits to capture more of them. Even without specifically targeting the
capture of all early outputs the circuits using the method were shown to be superior to the
DIMS counterparts. The addition of optimisations such as the early-drop and the anti-
token latches, allow the performance of the system to surpass the worst-case based
synchronous approach. The placement of these latches as well as balancing pipeline
stages and slack matching was done using the analysis of the slowest path. This has been
shown to improve the performance of both early output and (to a smaller extent) DIMS
circuits. The area and power concerns have been presented along with additional

optimisation techniques which were not explored. These form the basis of future work.
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With ever decreasing geometries of the microelectronics manufacturing processes, the
new attributes of the emerging technologies are making conventional design
methodologies increasingly difficult to apply. Timing closure is becoming increasingly
difficult and will soon start to consume the majority of the design time. Global clock
distribution and long distance communication are still manageable but techniques to
implement them are adding additional complication to already complex designs.
Transistor variation is making the above points more difficult and also the worst case
delay longer. The actual delay of the executed operation is becoming a small part of the
clock cycle, while taking the maximum possible period of time to compensate for clock
skewl/jitter affecting a worst case delay of the stage with slowest transistors of an

operation which is not even being executed.

These reasons have prompted the work presented in this thesis. The presented approach
has minimal impact on the architectural and transistor level methodologies. This allows it

to be used in conjunction with the current and future optimisations in these regions.

7.1  Contributions to knowledge

The thesis outlined five contributions to knowledge.

7.1.1 Early output

The early output logic approach was presented. A novel method of synthesizing early
output circuits was introduced and the ability for early result generation in different
circuits was evaluated. The reason for the inability of some constructions to capture all
early output states was presented and two approaches to overcome this through the

collection of all prime implicants were provided.
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7.1.2 Safe guarding

Due to the early output’s timing assumptions, two QDI logic design styles and their
impact on performance were presented. The safe guarding methods have the advantage of
performing close to the speed of non guarded early output circuits but they are very
robust. The slower of the two approaches (backward safe guarding) does also offer a

limited capacity for non propagating anti-tokens.

7.1.3 Anti-tokens

As well as the anti-token behaviour of backward safe guarding logic, a full anti-token

scheme was presented. Behaviour of anti-tokens which comprises: their generation,
propagation and destruction (through a merger with a token) was demonstrated. Anti-
token latch designs were given for the control, bundled data and the dual-rail design

styles.

7.1.4 Blame passing timing analysis

As the complexity of the behaviour of designs built in a bit-level pipelined system with
data-dependent delays is too high for engineers to be able to determine the performance
bottleneck, a new timing analysis system for use in asynchronous systems was presented.
This “blame passing simulation” system extracts the slowest path from a benchmarked
circuit, is technology independent and can be used in all asynchronous design styles. The
slowest path is the asynchronous circuit’'s equivalent of the critical path. Critical path
optimisation has been instrumental to the generation of high performance synchronous

circuits and the slowest path optimisation should prove itself to be equally useful.

7.1.5 Slowest path based optimisation

A series of keyhole optimisations based on the route of the slowest path were presented.
These were also demonstrated and their effect on the performance of a series of designs
was shown. An automatic method of generating possible optimisations derived from the

slowest path, applying them and committing the most effective, was outlined.
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7.2 Future work

The work conducted has opened many doors for future exploration of the subject and
industrial exploitation. The following are some of the proposed projects to be conducted

in the future (some of which are already active).

7.2.1 Complete tool suite

During the course of the thesis a set of tools was constructed to improve the understanding
of the behaviour of the circuits. These range from ‘Early’; a system for evaluating and
improving the early output coverage in single stage logic, through ‘S2A’; a system of
converting synchronous circuit descriptions to a range asynchronous styles and
simulating them (optionally extracting the slowest path), to a set of scripts to analyse the
slowest path to extract possible optimisation, annotate schematics and evaluate possible

optimisations.

A complete tool suite would take the aspects of the current implementations and combine
them all into a single easy to use tool. A single input specification can be used to target a
number of design styles, in a similar way to Balsa [57] and Tangram [58]. Currently the
input specification comes from a custom netlist format file and this would have to be
extended to embrace additional popular HDL languages and preferably a custom
language specifically designed to allow designers to exploit fully the additional
methodology features. The optimisation stage could be automatic or user directed. The
schematic annotation with the data from the slowest path extraction could be extended to

textual input specifications.

7.2.2 Timing assumption extraction

The extraction of timing assumptions is an area which has not been fully covered in this
thesis and its lack restricts the possible optimisations in the non QDI approaches
presented. The optimisations in question are the C-element tree flattening and
reorganisation (in the acknowledge and validity gathering). Extracting the timing

assumptions would allow further performance increases and would generate a more

robust system.
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7.2.3 Slowest path extraction in other systems

Although the slowest path extraction is bound to the asynchronous domain (running the
blame passing simulator on a synchronous circuit reveals the clock as the reason for the
slow operation) it can be used on other design styles. Handshake circuits (used in systems
such as Balsa and Tangram) are very different from the pipeline based structures used in
early output circuits, but the slowest path extraction would be equally effective for
improving their performance. The keyhole optimisation table would have to be rewritten

for the particular design style.

7.3 Summary

This thesis has presented a design approach takes advantage of asynchronous logic to
construct fast circuits. On each of the six testbenches presented the fully optimised early
output circuit with anti-tokens managed to outperform the synchronous equivalent at gate
level simulations. Future work should further extend the performance advantage. The
approach does come at a high cost of power consumption and area but with the reduced
effort of timing closure along with a range of benefits of using asynchronous logic could

justify its use.
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