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Abstract

With the ever increasing complexity of asynchronous
systems the performance cost of synchronisation during
the transfer of data becomes greater. This paper describes
methods of reducing synchronisations in four phase bun-
dled data systems. The generation of early outputs when
sufficient data has arrived to ensure a correct result is
used to desynchronise the output of a stage from the late
arriving and unnecessary inputs. Using early output logic
as a basis, further extensions can be implemented.

Anti-tokens allow not only the removal of a synchroni-
sation between inputs to a stage but also actively progress
backwards through the pipeline to remove the unwanted
data. This method halts speculative operations when the
result is found to be not needed in an attempt to lower
power consumption.

1. Introduction

As both the speed of operation and the number of
devices on a system-on chip rise there is increasing
difficulty in maintaining a synchronous model of system
operation. One solution is GALS (Globally Asynchronous,
Locally Synchronous) design which exploits asynchronous
interconnection of existing synchronous, locally clocked
macrocells.

Another alternative is a totally asynchronous design
approach. Large scale designs such as the Amulet[2] or the
MiniMIPS[3] have shown asynchronous benefits in many
areas such as power consumption and reduced EMI.

Asynchronous designs may be broadly divided into two
categories: those which minimise delay assumptions (i.e.
speed-independent (SI) or quasi-delay insensitive (QDI))
and those which make local delay assumptions (e.g.
bundled data) [1]. The former category are more robust
against layout variations and changes in operating
conditions (e.g. voltage, temperature) but impose a
significant overhead in area and, often, performance.

However there is another degree of freedom allowed
SI/QDI systems in that, because each bit symbol carries
own timing information, it is possible to pipeline system
very finely – down to bit level – with almost no additiona
cost. This freedom can allow the exploitation of more of th
oft-quoted advantages of asynchronous circuits [1].

Fine grain pipelining makes less sense for bundled da
systems; as in a clocked system their advantages come f
exploiting common timing assumptions. There is therefo
a temptation to contain a large number of bits in a bund

However as systems become more complex the desig
is faced with an increasing number of bits flowing aroun
the chip. Large scale synchronisation (if achievable) wou
lead to a largely synchronous device. Instead the system
be broken down to moderate sized pipelines and ben
from higher concurrency and throughput without the larg
cost of bit-level synchronisation elements.

As an example, consider a microprocessor. A ve
simple system is unpipelined and is a simple finite sta
machine. A higher performance system will explo
pipelining to increase throughput. A simple pipelining wil
be linear and analogous to a FIFO; a relatively simp
system to implement asynchronously.

As complexity increases the ‘pipeline’ becomes mo
complex. If register forwarding paths are added to allevia
dependency problems, the architecture becomes more

Figure 1: Example complex system
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a network than a pipeline. This added complexity means
that a ‘stage’ tends to have an increasing number of
neighbours with which it must synchronise to
communicate. In this environment any particular
communication may be infrequent, but unpredictable. In
the absence of a synchronising clock messages may be sent
in case they will be needed.

This paper describes ‘early output logic’ – a variation of
weak conditioned logic [4] – applied to a bundled-data
system where a method of reducing the speculative traffic
by allowing unwanted inputs to be ‘cancelled’ before they
have sent data. This avoids unnecessary synchronisations
between units where the data communication is not needed.

1.1. Asynchronous circuits

Unlike synchronous implementations, asynchronous
systems need to pass timing information with the data.
These are handshakes to inform the receiver that data is
ready and the transmitter that data is accepted. The
computation stages can take an arbitrary, possibly data
dependent, time between communications. This allows the
system to take advantage of improved performance of
simple computations and move towards ‘average case’
performance.

Data packets flowing through a system can be thought of
as tokens which reside briefly in a unit before being passed
on. The passing of a token synchronises the two
communicating units momentarily.

The handshake – ‘data is ready’ (request) and ‘ready for
another piece of data’ (acknowledge) – protocol can be
constructed in many ways.

All circuits described in this paper use the early ‘four
phase’ ‘bundled data’ protocol. To pass a token the request
is asserted by the producer once the data on the bus is
stable; this is acknowledged by the consumer asserting the
acknowledge line. At this point the producer can change the
data on the bus and deassert the request. Both the producer
and consumer must wait for the signal from the other to
signify it may generate another transition. This ensures that
both the consumer must hear the producer and vice-versa.
This also allows either of the connected units to pause the
transaction arbitrarily at any time.

1.2. Asynchronous latches

The Muller C-element [5] is one of the basic building
blocks of asynchronous circuits. It may have two or mo
inputs and one output. When all inputs are in the same st
the C-element switches state to the same state as the inp
It will then keep this state until all inputs have switched t
the other state.

Typical asynchronous latches use C-elements to enfo
synchronisation. There are many such designs [6]. Figur
shows an example latch design. The operation of th
asynchronous latch is very simple. The request out (R
signal is asserted when the request signal from the previo
stage (Ri) becomes asserted while acknowledge out (A
signal is not and remains so until the request in is releas
and the next stage has acknowledged the request. Here
latching of the data is done using a ‘clocked’ latch t
simplify the illustration. This ‘clock’ signal is taken from
the Ro line but it is possible to take the signal from the R
line. A delay is placed on the output of the Ro line to ensu
the data has been updated to the new values before
request signal is emitted. The sequencing of the reques
be after the data is called the bundling constraint.

1.3. Asynchronous logic

As asynchronous circuits have no clock to provide
reference delay, they have to rely of matched delays
ensure the result of an operation is ready before it is latche

As shown in figure 4 the request from the input latche
has to pass through a matched delay to allow time for t
data to pass through logic and be ready to be latched by
time the request signal reaches the output latch. The de
may be asymmetric as it is only necessary to delay t
request transition on the rising edge.

Figure 2: Four phase protocol
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1.4. Complex constructions

Figure 4 deals with pipelines with only one input and
one output. In order to allow the construction of circuits
other than simple FIFOs the system must allow stages with
multiple input and output pipelines. Figure 5 shows the
datapath of an example circuit with three inputs and two
outputs. It is a multiplexer taking two inputs (A and B) and
a control input (S) and passes the multiplexer result to
output X, while forwarding data S to output Z. Each of the
inputs has a set of outputs into which their data feeds and
each output has a set of inputs it relies on to generate the
result to pass to the next stage.

Figure 6 shows a simple method of generating the
completion and acknowledge signals for a pipeline stage
described in figure 5. The stage has completed when all the
inputs have arrived and their request signals have fired the
request gathering C-element, the output of which passes
through the matched delay to the output latches. The
acknowledge signals are also gathered using a C-element
and passed to all input latches.

1.5. Separating complex constructions

Although the method described above is sufficient to
produce the correct behaviour, there are unnecessary
restrictions on the generation of the request and

acknowledge signals. Output Z does not rely on inputs A
B but still has to wait for these inputs before its reque
signal is generated. Also inputs A and B wait for output
to accept its data before they receive an acknowledge e
though Z is not in their output sets. By separating th
request and acknowledge generation for each input a
output it is possible to allow the system more freedom a
concurrency. The generation of individual request signa
also allows better matching delays (e.g. the delay from S
Z may even be removed as no computation is conducted
the data before being moved to the next stage).

When pipelines fork and join some synchronisatio
must be imposed. Figure 7 shows a simple way of achievi
this; the upper C-element ensures that all three inpu
necessary to derive X have arrived, with the correspondi
acknowledgement broadcast to these sources. The othe
element provides the converse function for the tw
destinations supplied by input S.

2. Counterflow systems

Conventional logic systems have a unidirection
computational flow. Methods to allow bidirectiona
communication along a single channel with the token
flowing in opposite directions has some useful propertie

2.1. Counterflow pipelines

Sproull’s “Counterflow Pipe-line Processo
Architecture” [7] is an example system which allow

Figure 4: Asynchronous pipeline

Figure 5: Multiple input and output stage
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Figure 7: Standard request and acknowledge
generation
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results to flow up the pipeline in the opposite direction to
the instructions. In a system such as this, when a result
passes an instruction it may be taken into the instruction
and replace one of its operands. The result can also be
destroyed as it is no longer valid due to the instruction’s
destination matching the result’s.

The counterflow system is generated using two pipelines
pointing in opposite directions interlinked with arbiters. As
tokens move down the pipeline they place a request to an
arbiter to allow them to move to the next stage of the
pipeline. There is a mutual exclusion between tokens
moving past each other. When moving past a token, flowing
in the opposite direction, the arbiter ensures the tokens will
meet and not simply move past one another.

The need to perform a complex operation upon the
collision of tokens and the need to preserve them after the
collision requires the use of expensive arbiters. But often it
is simply required that on a collision the two tokens should
annihilate each other. This allows a much simplified
pipeline structure as tokens never have to move past one
another. Such a system could be implemented using just
one pipeline.

2.2. Counterflow network

The counterflow network [8] is a system which allows
bidirectional communication of control signals. These
signals upon collision combine and then remove
themselves.

Tokens flowing through the system have a direction of
travel and can stretch over several stages. This means the
token’s leading edge can move several stages ahead of the
trailing edge.

The tokens when flowing in the same direction will
queue and not combine but when flowing in opposite
directions the leading edges of the tokens will collide and
combine the two tokens together. The trailing edges then
remove the token from all stages until they too collide. This
has effectively combined and destroyed the two tokens.

The two building blocks of counterflow networks are
nodes and links. Nodes are meeting places for several (at
least two) pipelines. Links are used to connect two nodes
together.

2.3. Counterflow network circuit

The construction of counterflow networks is very
simple. Figure 8 shows the circuit used to generate a
counterflow network composed of two nodes connected by
a link. The most important thing to notice about the circuit
is that it is symmetrical. This means that there is no
distinction between tokens flowing in either direction.

Nodes and links communicate using three signals: N

(Node request), L (Link request) and R (Ready). A nod
will ‘fire’ once all its link neighbours are ready and the
firing condition has been met. The firing condition i
generated by applying a logic function (cloud in figure 8
on the latch request signals. The function decides whi
neighbouring nodes must have fired in order for this no
to fire. In order to make a single direction FIFO the firin
condition is an identity of one of the inputs. A bidirectiona
pipeline can be created by using an OR gate as the fir
condition function.

A link simply forwards the request of one node to it
neighbour but once both the neighbours have fired th
request is dropped and the link becomes ‘not ready’ un
both nodes have released their requests.

During a token collision both the node and the lin
elements are unaware the collision took place. The lin
simply forwards the ‘node request’ signals from each sid
to the other node and when both of its neighbours a
requesting it drops its ready signal waiting for both t
release their request. The node during a collision will ‘fire
when any (one or more) of the links pass it a request. T
effect of this is that the two leading edges of the token w
combine the two tokens. Both the latches and the nod
which have fired will wait for the trailing ends of the token
to arrive and release them. This has effectively combin
and destroyed the two tokens.

3. Early output

Early output logic is an extension to the standard fo
phase bundled data system described in section
Separating the completion circuits, shown in section 1.
allows some outputs to be generated before others. Out
latches only have to wait for the inputs in their input se
rather than all inputs.

In practice it is often possible to determine an outp
state before all the inputs have arrived. Methods such
‘weak condition’ logic [4] try to generate data as early a
possible as this is beneficial to the system performance

In the datapath shown in figure 5 the separation of the

Figure 8: Counterflow network circuit
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and Z output bundles is not the only optimisation possible.
Although creation of output Z is impossible before input S
arrives, the generation of the result X maybe possible
before all inputs have arrived.

This can be achieved by generating the request signal
once sufficient data to carry out the operation has arrived
and a matched delay has passed. The completion signal can
be generated by observing the arrival of the input requests
along with their data. In the case of the multiplexer the
result is ready when either the select line of the multiplexer
is ‘0’ and inputs A and S have arrived or the select line is
‘1’ and inputs B and S have arrived.

There is one more case in this example where the output
can be generated with an incomplete input set. When inputs
A and B are equal the select signal and input S is irrelevant
to the result to the operation. To detect this early completion
state a comparator is needed and as the circuit data width
may be large this can be expensive. It is not necessary to
detect all the early output states. In cases such as this the
detection of this case is not beneficial as: the area cost
maybe too high, the probability of the case happening is too
low and the timing of the design ensures that the
unnecessary input is never very late. To get the optimal
performance the design should only detect early output
cases where doing so is beneficial to the performance of the
design.

A circuit for early output request generation for the
multiplexer stage example is shown in figure 9. As shown
this circuit is ‘broken’, but serves to illustrate how the
request to X could be derived. Generating the result before
all inputs have arrived breaks the sequencing in the four
phase protocol; the last input stage could receive an
acknowledge before it generated a request. If the outgoing
request is early it is therefore important to ensure all the
inputs are collected before completing the cycle.

3.1. Guarding

To protect the input latches from receiving acknowledge
signals before being ready to accept them, guarding C-
elements are introduced (figure 10). These ensure that
inputs will only receive an acknowledgement once they are
ready. A guarding C-element takes the acknowledge signal

from the output latch and combines it with the reque
signals of all inputs. Only after all inputs have arrived ca
the acknowledge signal pass through the guarding
element.

The C-elements will not release or assert th
acknowledge signal until all inputs have released
asserted their request. This ensures that all inputs h
accepted the acknowledge transition before continuing
the next transition. This was done by the old reque
generation C-element but is no longer present in the n
version.

3.2. Validity

The input request is now used for two purposes: th
request signal generation logic and the guarding log
These have different requirements (e.g. the request pas
to the guarding logic does not need to pass through
bundling delay).

Creating a separate signal specifically to drive th
guarding logic permits improvements in designs (such
the semi-decoupled latches introduced below) as well
boosting the performance of the system slightly. Th
performance increase is due to the late arriving tokens n
needing to meet latch delay constraints before signalli
the guarding C-elements and allowing a
acknowledgement. The new signal, separated from requ
is called ‘Validity out’ (Vo).

In standard latches the Vo signal is generated the sa
way as the Ro signal except it does not need to pass thro

Figure 9: Early output request generation
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Figure 11: Validity signal connections
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the latch modelling delay. Its function is to indicate that the
latch is ready to receive an acknowledge.

Another signal is taken into the latch but is not necessary
in most latch designs. The Vi signal is generated by the
guarding C-element in the previous stage and can be used
to tell the latch if the previous stage has completed. This is
not necessary in most latch designs as it is possible to
observe this by monitoring the Ri signal instead, but it
becomes essential when constructing latches which need
not receive an Ri signal before acknowledging such as the
anti-token latch described in section 4.

3.3. Semi-decoupled latches

A semi-decoupled latch [6] controller releases its output
request as soon as it is acknowledged; this allows the output
latches of a stage to reset even before all inputs have been
released. If this is not done the request can still propagate
but will ‘stretch’ across several pipeline stages.

By separating the request functions into request and
validity the construction of a semi-decoupled latch
controller becomes simpler. The designer can now make
use of the relationship of the inputs and outputs of the
design, or more specifically the fact that the Vo (Validity
out) line passes through guarding C-elements, to return as
Ao (Acknowledge out). This ensures that an acknowledge
signal does not arrive until the latch is ready to accept it and
has announced this by raising the Vo line. Ai and Vi have a
similar relationship which can be exploited (demonstrated
in section 4).

Normally semi-decoupled latches require two C-
elements but, because we have unbundled the request from
the validity lines, there are C-elements outside the latch
which can be exploited. Figure 12 shows a design of a semi-
decoupled latch making use of the external C-elements and
requiring only one internal C-element. The only alteration
to the design from the original design in figure 3 is the
addition of the AND gate to remove the request signal as
soon as the acknowledge signal arrives. The arrival of the

acknowledge does not necessarily release the Vo signal
this will stay active until the request input to the latch ha
been released. This prevents the following stage fro
starting to compute but does release the request signal
allow stages further down the pipeline to do so.

4. Anti-tokens

Semi-decoupled latches allow early output tokens
flow ahead freely. This removes one of the synchronisati
constraints in an asynchronous network. However toke
are still generated and propagated unnecessarily;
example the unwanted input to the multiplexer in figure 

The remaining step is for a redundant logic input t
signal that it is no longer required. This involves
propagating informationbackwardsalong the pipeline.
Such signals are designated anti-tokens.

The counterflow network, described in section 2.2, h
many properties similar to the early output system. Th
nodes and pipeline stages are similar in the respect that t
collect the ready/valid signal from all inputs using a C
element and generate a fire/request signal by perform
some logical function on the request lines of the inputs. T
links and latches connect pipeline stages/nodes a
propagate the request signals between stages.

By implementing a cross between counterflow circui
and early output logic the resultant system will allow th
creation of anti-tokens.

Anti-tokens [9] are like tokens but flow in the opposite
direction to the general computation flow. When an an
token collides with a forward moving token they combin
and destroy each other. An anti-token can be dispatched
eliminate a late, approaching input, allowing the stage
move on to its next computation.

By flowing backwards through the pipeline the ant
token moves towards the data source and can do so fa
than the normal forward propagation of tokens becau
there is no need for computation.

4.1. Anti-token latch design

The counterflow network circuit can be recreated in th
early output system. The design in figure 13 is visibl
similar to that in figure 8.

The counterflow network design has been adapted a
used to generate an anti-token latch design. The Ri sig
becomes active when sufficient inputs have arrived to
stage. This signal is combined with what would have be
the link request in the counterflow network design. Th
allows the output latch to cause the stage to reset. T
output latch does not need any inputs to be present to ca
a reset of the stage, so an OR gate is used to allow a st
reset when either the output latch or a sufficient set of inp

Figure 12: Early output semi-decoupled
latch design
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latches have fired.

The latch design described above is not optimal and does
not fit well with the early output logic system. The latch
outputs two signals which need to be attached to the
guarding C-element in the input stage. It would be
advantageous to implement a latch design which has the
same input and output set as the other latch designs.
Additionally this design does not have an early-output
property. The latch will only pass the request forwards
when the input stage has both received the necessary set of
inputs and all inputs have presented their validity. In order
to generate early output behaviour the Ri line must cause a
rise in Ro and Ai.

Figure 14 shows a optimised design which instead of
waiting for the input stage to complete the request out is
generated once the request in has arrived and before all
inputs to the previous stage have become valid.

4.2. Anti-token operation

The anti-token latches are able to accept anti-tokens by
asserting their validity before they have any data. By
asserting their validity early they enable the generation of
the acknowledge signal. There are two reasons why a latch
may receive an early acknowledge, the stage may have
generated a result without needing to rely on the presence
of the data supplied by the latch or the output latch of the
stage propagating an anti-token. This acknowledge signal is

then propagated backwards through the latch to the sta
feeding it. In this stage the acknowledge signal (Ao
overrides the request in (Ri) and causes an acknowledg
(Ai). If all latches inputting to this stage have raised the
valid signals they (either due to the fact that they have da
or they are anti-token latches and raise the validity ear
the stage will complete and an acknowledgement signa
sent to all inputs. Inputs which have tokens will receive a
acknowledge and remove their tokens while the anti-tok
latches which receive an acknowledgement before data w
propagate it backwards.

In figure 15 is the example circuit presented earlier. Th
stage was unable to complete as only one of the inputs h
arrived and this was enough data to generate only one of
outputs. The second output has received an anti-token
can now propagate this to the inputs of the stage. If the inp
latches were not anti-token latches then they would
protected against receiving an early acknowledge and
stage would not be able to complete. If they are anti-tok
latches then they will allow the stage to complete an
receive an early acknowledge. The anti-token is th
propagated and removes the tokens presented to the st
Latches which have not presented tokens will accept a
propagate an anti-token. This example shows how an a
token can both be split into many anti-tokens but if the sta
had already received all inputs then the anti-token would
removed along with all inputs.

4.3. Anti-token timing assumptions

The anti-token latches rely on a timing assumption in th
system to ensure correct operation. As the Ri line is n
sensed in the anti-token passing action the release of
line by all inputs is not noted. The assumption that the del
of the request generation logic (figure 9) is shorter in th
reset phase than the delay of the guarding C-element,
the anti-token latch C-element. Although this is easily m
with simple circuits it becomes more difficult when mor
complex request generation methods are used.

A solution to this problem is the use of precharge log
to construct the request generation. This would be reset
the guarding C-element and remove any slow progress
signals in the logic.

Figure 13: Adapted anti-token latch design

Figure 14: Correct anti-token latch design
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5. Conclusions

The generation of early results is a definite advantage to
circuit performance with a small overhead cost. This also
facilitates the employment of specialist latches which allow
more flexibility in system design, boosting performance
further. The ability to use a mix of latch designs safely
allows the use of the latches that best suit the application.

As pipeline networks become more common, there are
an increasing number of external C-elements needed to
coordinate responses from different paths. Early output
latches can exploit these and thus reduce their internal
complexity hence reducing area and power cost.

The removal of input dependencies further
desynchronises the system thus may reduce harmonic
electromagnetic emissions.

The effects on circuits specifically built to take
advantage of anti-tokens would be even greater. Due to the
average case performance not being a factor in synchronous
designs the average case performance of generic circuits is
poor. Designing circuits where the worst case performance
is poor but the average case performance is good can be
advantageous. Speculatively starting long operations,
rather than waiting for the result in order to throw it away,
reduces system stalls. This allows the generation of results
as soon as possible yet does not take the penalty of an
increased average stage timing.

The anti-token system is an effective method of reducing
the cost of speculative operations by safely terminating
them during their execution. This method having been
demonstrated on simple circuits such as small multiplexers
becomes more effective on larger and more complex
designs. For example, the probability that the required
value to the multiplexer will be the last to arrive reduces as
the number of inputs increases.

The anti-token systems as presented appear to offer a
benefit in asynchronous pipelines. It is possible that large
systems can be built on this principle, expanding the scope
of asynchronous circuits further.
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